Issue |
A&A
Volume 419, Number 2, May IV 2004
|
|
---|---|---|
Page(s) | 725 - 733 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20040079 | |
Published online | 03 May 2004 |
Is missing Fe I opacity in stellar atmospheres a significant problem?
1
Istituto di Astrofisica Spaziale e Fisica Cosmica, INAF, via del Fosso del Cavaliere, 00133 Roma, Italy
2
Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131 Trieste, Italy
3
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA e-mail: rkurucz@cfa.harvard.edu
Corresponding author: F. Castelli, castelli@ts.astro.it
Received:
16
June
2003
Accepted:
16
February
2004
We present an empirical model-atmosphere investigation of missing
Fe I opacity. Houdashelt et al. ([CITE]) estimated that if
Dragon & Mutschlecner ([CITE]) Fe I cross sections used in the MARCS model
atmospheres (Gustafsson et al. [CITE]) were replaced by the Bautista ([CITE])
cross sections the solar continuous flux would be reduced by 15% in the
near ultraviolet. That would imply systematic errors in models for F, G, and K stars. As a consequence, since ATLAS9 (Kurucz [CITE]) uses an
approximation to the same Dragon & Mutschlecner ([CITE]) opacities, there should
also be similar systematic errors in ATLAS9 models that required this
investigation.
Bound-free Fe I cross sections computed by Bautista ([CITE]) in the framework of the IRON Project
were used to generate the continuous Fe I absorption coefficient.
It was incorporated in the Kurucz ([CITE]) ATLAS9 code, in place
of that currently used, which is based on approximate cross sections by Kurucz.
By combining Opacity Distribution Functions (ODFs) computed without the
contribution of Fe I autoionization lines with the new Fe I absorption coefficient which is crowded with
autoionization resonances, we obtained solar metallicity model atmospheres and energy distributions for
several combinations of Teff and . The comparison of these models with the standard ATLAS9 models
has shown that there are no differences
in the T-
relations, while there are some changes in the energy distributions for
Teff ≤ 7000 K, but limited to small wavelength regions around 2150 Å, where Kurucz has less opacity,
and 3350 Å, where Bautista has less opacity. The differences are
of the order of 25% and less than 10%, respectively.
That around 2150 Å disappears for Teff ≤ 5500 K owing to the fall of the emergent flux
at these wavelengths in cool stars.
This behaviour is independent of the gravity. The explanation is that our line list actually has more
autoionizing opacity than Bautista's but it is treated as bound-bound line opacity rather than
as bound-free opacity.
Key words: stars: atmospheres / atomic processes / atomic data
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.