Issue |
A&A
Volume 414, Number 2, February I 2004
|
|
---|---|---|
Page(s) | 559 - 572 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20031647 | |
Published online | 19 January 2004 |
Structuring and support by Alfvén waves around prestellar cores
1
Observatoire de Strasbourg, 11 rue de l'Université, 67000 Strasbourg, France
2
Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721, USA
Corresponding author: D. Folini, folini@astro.u-strasbg.fr
Received:
22
August
2002
Accepted:
1
October
2003
Observations of molecular clouds show the existence of starless, dense cores, threaded by magnetic fields. Observed line widths indicate these dense condensates to be embedded in a supersonically turbulent environment. Under these conditions, the generation of magnetic waves is inevitable. In this paper, we study the structure and support of a 1D plane-parallel, self-gravitating slab, as a monochromatic, circularly polarized Alfvén wave is injected in its central plane. Dimensional analysis shows that the solution must depend on three dimensionless parameters. To study the nonlinear, turbulent evolution of such a slab, we use 1D high resolution numerical simulations. For a parameter range inspired by molecular cloud observations, we find the following. 1) A single source of energy injection is sufficient to force persistent supersonic turbulence over several hydrostatic scale heights. 2) The time averaged spatial extension of the slab is comparable to the extension of the stationary, analytical WKB solution. Deviations, as well as the density substructure of the slab, depend on the wave-length of the injected wave. 3) Energy losses are dominated by loss of Poynting-flux and increase with increasing plasma beta. 4) Good spatial resolution is mandatory, making similar simulations in 3D currently prohibitively expensive.
Key words: turbulence / magnetohydrodynamics (MHD) / ISM: clouds / ISM: kinematics and dynamics / ISM: magnetic fields / ISM: structure
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.