Issue |
A&A
Volume 414, Number 1, January IV 2004
|
|
---|---|---|
Page(s) | 335 - 350 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20031605 | |
Published online | 12 January 2004 |
Dust in brown dwarfs
III. Formation and structure of quasi-static cloud layers
1
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
2
Konrad-Zuse-Zenrum für Informationstechnik Berlin, Takustraße 7, 14195 Berlin, Germany
Corresponding author: P. Woitke, woitke@astro.physik.tu-berlin.de
Received:
26
March
2003
Accepted:
13
October
2003
In this paper, first solutions of the dust moment equations
developed in (Woitke & Helling [CITE]) for the description of dust
formation and precipitation in brown dwarf and giant gas planet
atmospheres are presented. We consider the special case of a static
brown dwarf atmosphere, where dust particles continuously nucleate
from the gas phase, grow by the accretion of molecules, settle
gravitationally and re-evaporate thermally. Mixing by convective
overshoot is assumed to replenish the atmosphere with condensable
elements, which is necessary to counterbalance the loss of
condensable elements by dust formation and gravitational settling
(no dust without mixing). Applying a kinetic description of the
relevant microphysical and chemical processes for TiO2-grains,
the model makes predictions about the large-scale stratification of
dust in the atmosphere, the depletion of molecules from the gas
phase, the supersaturation of the gas in the atmosphere as well as
the mean size and the mass fraction of dust grains as function of
depth. Our results suggest that the presence of relevant amounts of
dust is restricted to a layer, where the upper boundary (cloud deck)
is related to the requirement of a minimum mixing activity (mixing
time-scale s) and the lower boundary
(cloud base) is determined by the thermodynamical stability of the
grains. The nucleation occurs around the cloud deck where the gas is
cool, strongly depleted, but nevertheless highly supersaturated
(
). These particles settle gravitationally and populate
the warmer layers below, where the in situ formation (nucleation) is
ineffective or even not possible. During their descent, the
particles grow and reach mean radii of ≈
at the cloud base, but the majority of
the particles in the cloud layer remains much smaller. Finally, the
dust grains sink into layers which are sufficiently hot to cause
their thermal evaporation. Hence, an effective transport mechanism
for condensable elements exists in brown dwarfs, which depletes the
gas above and enriches the gas below the cloud base of a considered
solid/liquid material. The dust-to-gas mass fraction in the cloud
layer results to be approximately given by the mass fraction of
condensable elements in the gas being mixed up. Only for
artificially reduced mixing we find a self-regulation mechanism that
approximately installs phase equilibrium (
) in a
limited region around the cloud base.
Key words: stars: atmospheres / stars: low-mass, brown dwarfs / dust, extinction / molecular processes / methods: numerical
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.