Issue |
A&A
Volume 413, Number 1, January I 2004
|
|
---|---|---|
Page(s) | 329 - 342 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20034072 | |
Published online | 17 December 2003 |
Comprehensive modelling of the planetary nebula LMC-SMP 61 and its [WC]-type central star*
1
LUTH, Observatoire de Meudon, 5 place Jules Janssen, 92195 Meudon Cedex, France
2
Institut für Physik, Astrophysik, Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany e-mail: goetz@astro.physik.uni-potsdam.de
3
Instituto de Astronomía, UNAM, Apdo. Postal 70 264, México D.F., 04510, México e-mail: miriam@astroscu.unam.mx
4
Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771, USA e-mail: lars@winds.gsfc.nasa.gov
5
N. Copernicus Astronomical Center, Rabiańska 8, 87–100 Toruń, Poland e-mail: szczerba@ncac.torun.pl
Corresponding author: G. Stasińska, grazyna.stasinska@obspm.fr
Received:
11
July
2003
Accepted:
18
September
2003
We present a comprehensive study of the Magellanic Cloud planetary
nebula SMP 61 and of its nucleus, a Wolf-Rayet type star classified [WC 5-6].
The observational material consists of HST STIS spectroscopy and imaging,
together with optical and UV spectroscopic data collected from the literature
and infrared fluxes measured by IRAS. We have performed a detailed spectral
analysis of the central star, using the Potsdam code for expanding atmospheres
in non-LTE. For the central star we determine the following parameters:
=
,
=
,
=
,
=
,
=
, and a clumping factor of D = 4. The elemental abundances by
mass are XHe = 0.45, XC = 0.52,
, XO = 0.03, and
. The
fluxes from the model stellar atmosphere were used to compute photoionization
models of the nebula. All the available observations, within their error
bars, were used to constrain these models. We find that the ionizing fluxes
predicted by the stellar model are consistent with the fluxes needed
by the photoionization model to reproduce the nebular emission, within the
error margins. However, there are indications that the stellar model
overestimates the number and hardness of Lyman continuum photons. The
photoionization models imply a clumped density structure of the nebular
material. The observed C iii]
C ii
line ratio implies the existence of
carbon-rich clumps in the nebula. Such clumps are likely produced by stellar
wind ejecta, possibly mixed with the nebular material. We discuss our results
with regard to the stellar and nebular post-AGB evolution. The observed
Fe-deficiency for the central star indicates that the material which is now
visible on the stellar surface has been exposed to s-process nucleosynthesis
during previous thermal pulses. The absence of nitrogen allows us to set an
upper limit to the remaining H-envelope mass after a possible AGB final
thermal pulse. Finally, we infer from the total amount of carbon detected in
the nebula that the strong [WC] mass-loss may have been active only for a
limited period during the post-AGB evolution.
Key words: stars: Wolf-Rayet / stars: atmospheres / stars: mass-loss / ISM: abundances / ISM: planetary nebulae: individual: SMP 61 / ISM: planetary nebulae: general
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.