Issue |
A&A
Volume 412, Number 2, December III 2003
|
|
---|---|---|
Page(s) | 529 - 539 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20031236 | |
Published online | 28 November 2003 |
Alfvén wave propagation and dissipation in a 3D-structured compressible plasma
1
Dipartimento di Fisica, Università della Calabria, via P. Bucci, 87036 Rende (CS), Italy
2
Istituto Nazionale per la Fisica della Materia, Unità di Cosenza, via P. Bucci, 87036 Rende, Italy
Corresponding author: F. Malara, malara@fis.unical.it
Received:
2
June
2003
Accepted:
30
July
2003
The propagation and the dissipation of small-amplitude Alfvén waves
in an equilibrium configuration characterized by three-dimensional
inhomogeneities is investigated. Disturbances are supposed to have a
typical wavelength smaller than the scale of nonuniformity of the background
structure, which allows us to use a WKB expansion technique. The approach we
used is similar to that employed by Petkaki et al. ([CITE]), who
studied the case of an incompressible plasma. In the present
paper a compressible cold plasma is considered, which is more suitable than
an incompressible plasma to describe the situation of the solar Corona, where
. Small wavelengths allow to decouple Alfvén from magnetosonic
fluctuations at the linear level. Considering small Alfvénic wavepackets,
the evolution equations
for the position, wavevector, and energy are derived. These equations are similar
to those obtained by Petkaki et al. ([CITE]), and they have the same form
only if the background density
is supposed to be constant. Then, the
results found by Petkaki et al. ([CITE]) for an incompressible plasma are
valid also in a compressible cold plasma, provided that
:
in particular, in the presence of regions of chaotic fieldlines the wavevector
of Alfvénic perturbations exponentially grows and the dissipation time of the wave
is
, S being the Reynolds number. Thus, a fast dissipation is
attained even with large values of S, as in the Corona. The equations derived in
the present paper are more general than those of Petkaki et al. ([CITE]),
since they can be used also with a nonuniform background density.
The present model is discussed with reference to the problem of coronal heating.
Key words: magnetohydrodynamics (MHD) / waves / Sun: corona
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.