Issue |
A&A
Volume 409, Number 3, October III 2003
|
|
---|---|---|
Page(s) | 969 - 982 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20031109 | |
Published online | 17 November 2003 |
The central star of the planetary nebula N 66 in the Large Magellanic Cloud: A detailed analysis of its dramatic evolution 1983–2000 *,**
1
Professur Astrophysik, Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
2
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, 04510 México, DF, México
3
Depto. de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
Corresponding author: W.-R. Hamann, wrh@astro.physik.uni-potsdam.de
Received:
31
March
2003
Accepted:
11
July
2003
The central star of the planetary nebula N 66 (alias WS 35,
SMP 83 and HV 5967) in the Large Magellanic Cloud enhanced its
brightness dramatically in 1993 and 1994. Within the subsequent four
years it returned to the previous level.
Its spectrum resembles that of a Wolf-Rayet star
of the nitrogen sequence (WN4.5). We monitored the object intensively
from ground and with the Hubble Space Telescope. Now we present the
complete set of spectroscopic observations from the different epochs
before, during and after the brightness outburst of N 66.
The stellar spectra from the different epochs are analyzed in detail by
means of most advanced non-LTE models for expanding stellar atmospheres.
The main results are: the luminosity, , before and
after the outburst is exceptionally high for a central star of a
planetary nebula. During the outburst in 1994, it even climbed up to
for about one year. The effective temperature of
about 112 kK remained roughly constant, i.e. the luminosity mainly
increased because of a larger effective stellar radius. The mass loss
rate increased from
in the quiet
state to
during the outburst. The
chemical composition of the stellar atmosphere is that of incompletely
CNO-processed matter: it is dominated by helium with a rest of hydrogen,
nitrogen being slightly enhanced and carbon strongly depleted.
We extensively discuss possible scenarios for the nature and
evolutionary origin of N 66, which should explain the exceptional
stellar parameters, the atmospheric composition, the outburst mechanism,
and the existence of the bipolar nebula which was ejected only a few
thousand years ago and contains about 0.6 solar masses of hydrogen-rich
matter.
If being a single star, N 66 might be (i) a low-mass star after the
Asymptotic Giant Branch, as usually adopted for central stars of
planetary nebulae, (ii) a massive, i.e. non-degenerate star, or (iii) a
merger produced from two white dwarfs. Although there are no direct
indications for binarity, we alternatively discuss whether N 66 might
be (iv) a massive star which lost its hydrogen envelope in a recent
common-envelope phase with a less massive companion, or (v) a white dwarf
accreting mass from a companion with a high rate.
None of the scenarios is free of any contradiction to at least one
of the observational facts. However, the binary scenarios pose less
severe problems. If N 66 is a white dwarf accreting matter in a
close-binary system, its present accretion rate would bring it to the
Chandrasekhar limit within a few hundred thousand years. Thus N 66
might be a
candidate for a future type Ia supernova explosion in our cosmic
neighborhood.
Key words: stars: winds, outflows / stars: mass-loss / stars: Wolf-Rayet / stars: evolution / planetary nebulae: individual: LMC-N66
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.