Issue |
A&A
Volume 409, Number 2, October II 2003
|
|
---|---|---|
Page(s) | 619 - 640 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20030953 | |
Published online | 17 November 2003 |
Probing AGB nucleosynthesis via accurate Planetary Nebula abundances
1
Dipartimento di Astronomia, Università di Padova, Vicolo dell'Osservatorio 2, 35122 Padova, Italy
2
SRON National Institute for Space Research, PO Box 800, NL 9700 AV Groningen, The Netherlands
3
Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands
Corresponding author: P. Marigo, marigo@pd.astro.it
Received:
28
January
2003
Accepted:
17
June
2003
The elemental abundances of ten planetary nebulae, derived with high accuracy
including ISO and IUE spectra, are analysed with the aid of
synthetic evolutionary models
for the TP-AGB phase.
The accuracy on the observed abundances is essential in order to make
a reliable comparison with the models. The advantages of the
infrared spectra in achieving this accuracy are discussed.
Model prescriptions are varied until we achieve the
simultaneous reproduction of all elemental features, which allows
placing important constraints on the characteristic
masses and nucleosynthetic processes experienced by the stellar progenitors.
First of all, it is possible to separate the sample into two groups of PNe,
one indicating the occurrence of only the third dredge-up during the
TP-AGB phase, and the other showing also the chemical signature of hot-bottom
burning.
The former group is reproduced by stellar models
with variable molecular opacities (see Marigo [CITE]), adopting initial solar
metallicity, and typical efficiency of the third dredge-up,
.
The latter group of PNe, with extremely high He content
(
) and marked oxygen deficiency,
is consistent with original sub-solar metallicity
(i.e. LMC composition). Moreover, we are able to explain quantitatively both
the N/H–He/H correlation and the N/H–C/H anti-correlation,
thus solving the discrepancy pointed out long ago by Becker & Iben ([CITE]).
This is obtained only under the hypothesis that
intermediate-mass TP-AGB progenitors (
) with LMC composition have suffered a number of very efficient, carbon-poor,
dredge-up events.
Finally, the neon abundances of the He-rich PNe can be recovered
by invoking a significant production of 22Ne during thermal pulses,
which would imply a reduced role of the 22Ne(α, n)25Mg
reaction as neutron source to the s-process nucleosynthesis in these stars.
Key words: stars: AGB and post-AGB / stars: evolution / stars: mass loss / planetary nebulae: general / nuclear reactions, nucleosynthesis, abundances
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.