Issue |
A&A
Volume 408, Number 3, September IV 2003
|
|
---|---|---|
Page(s) | 817 - 828 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20031032 | |
Published online | 17 November 2003 |
Calculations of dynamo coefficients in Parker unstable disks without shear
Astronomical Observatory, Jagiellonian University, 30-244 Kraków, Poland
Corresponding author: otmian@oa.uj.edu.pl
Received:
10
March
2003
Accepted:
16
May
2003
We investigate the influence of the Coriolis force and magnetic
reconnection on the evolution of the Parker instability in galactic disks.
We apply a three-dimensional (3D)
model of a local gas cube, permeated by an azimuthal regular
magnetic field. We numerically solve MHD equations including the
contribution of the Coriolis force.
At this stage of the investigation we omit the effects of rotational shear.
Our previous simulations demonstrate that Parker instability leads to the
formation of helically twisted magnetic flux tubes forming
a significant poloidal magnetic field
component on the scale of the whole cube. Such an evolution represents
an example of the fast dynamo process proposed by Parker (1992).
In the present work we extend our earlier computations
by calculating the basic coefficients of the MHD dynamo as time-dependent
functions.
The well-known dynamo coefficients α and – both in the
relevant tensorial formulations – are derived from small scale gas motions
present in the Parker instability model,
so in a local formulation the total turbulent electromotive force (EMF)
is described as a quantity
dependent on time. The EMF-coefficients α and
are
evaluated within the limit of high microscopic conductivity.
Key words: galaxies: ISM / galaxies: magnetic fields / ISM: magnetic fields / MHD
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.