Issue |
A&A
Volume 408, Number 3, September IV 2003
|
|
---|---|---|
Page(s) | 941 - 947 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20031044 | |
Published online | 17 November 2003 |
The afterglow and the host galaxy of GRB 011211 *,**,***
1
Astronomical Observatory, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
2
Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
3
Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, 8000 Århus C, Denmark
4
IAA-CSIC, PO Box 03004, 18080 Granada, Spain
5
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
6
NSSTC, SD-50, 320 Sparkman Drive, Huntsville, Alabama 35805, USA
7
Department of Physical Sciences, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, UK
8
Institute of Theoretical Astrophysics, University of Oslo, PB 1029 Blindern, 05315 Oslo, Norway
9
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
10
Indian Institute of Astrophysics, Sarjapur Road, Bangalore 560 034, India
11
State Observatory, Manora Peak, Nainital 263 129, India
Corresponding author: P. Jakobsson, pallja@astro.ku.dk
Received:
4
November
2002
Accepted:
4
July
2003
We present optical, near-infrared, and X-ray observations of the
optical afterglow (OA) of the X-ray rich, long-duration gamma-ray
burst GRB 011211. Hubble Space Telescope (HST) data obtained 14, 26,
32, and 59 days after the burst, show the host galaxy to have a
morphology that is fairly typical of blue galaxies at high redshift.
We measure its magnitude to be . We detect a
break in the OA R-band light curve which is naturally accounted
for by a collimated outflow geometry. By fitting a broken power-law
to the data we find a best fit with a break
days
after the burst, a pre-break slope of
,
and a post-break slope of
.
The UV-optical spectral energy distribution (SED) around 14 hours
after the burst is best fit with a power-law
with index
reddened by an SMC-like
extinction law with a modest
mag.
By comparison, from the XMM-Newton X-ray data at around the same time,
we find a decay index of
and a spectral index of
. Interpolating between the
UV-optical and X-ray implies that the cooling
frequency is located close to ~1016 Hz in the
observer frame at the time of the
observations. We argue, using the various temporal and spectral
indices above, that the most likely afterglow model is that of a
jet expanding into an external environment that has a constant
mean density rather than a wind-fed density structure. We estimate the electron energy index for this burst to be
.
Key words: cosmology: observations / gamma rays: bursts / stars: supernovae: general / ISM: dust, extinction
Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden.
Based on observations made with ESO Telescopes at the Paranal Observatory by GRACE under programme ID 69.D-0701.
Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #8867.
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.