Issue |
A&A
Volume 406, Number 3, August II 2003
|
|
---|---|---|
Page(s) | 915 - 935 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20030726 | |
Published online | 17 November 2003 |
A multiwavelength study of the S 106 region*
II. Characteristics of the photon dominated region
1
I. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
2
IRAM and Observatoire de Grenoble, BP 53, 38406 Saint Martin d'Hères, France
3
Observatoire de Bordeaux, BP 89, 33270 Floirac, France
4
Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
Corresponding author: N. Schneider, schneider@obs.u-bordeaux1.fr
Received:
11
October
2002
Accepted:
6
May
2003
The O star S 106 IR powers a bright, spatially extended
(
pc at a distance of 600 pc) photon
dominated region (PDR) traced by our observations of FIR fine
structure lines and submm molecular transitions. The [C II] 158 μm, [C I] 609
and 370 μm, CO 7
6, and CO 4
3
measurements probe the large scale (1.2 pc) PDR emission, whereas
[O I] 63 μm, CN
, and CS
observations are
focused on the immediate (~
(0.2 pc)) environment of S 106 IR. A hot (
K) and dense
(
cm-3) gas
component (emission peaks of [C II] 158 μm, CO 7
6, and CO 4
3) is found at S 106 IR. Cooler gas associated with the bulk
emission of the molecular cloud is characterized by two emission
peaks (one close (20'' east) to S 106 IR and one 120'' to the
west) seen in the [C I] and low-J (
) CO emission lines. In
the immediate environment of the star, the molecular and [C I] lines
show high-velocity emission due
to the interaction of the cloud with the stellar wind of S 106 IR.
The intensities of the FIR lines measured with the KAO are compared
to those observed with the ISO LWS towards two positions, S 106 IR
and 120'' west. We discuss intensities and line ratios of the
observed species along a cut through the molecular cloud/H II
region interface centered on S 106 IR. The excitation conditions
(Tex, opacities, column densities) are derived from an LTE analysis. We find that the temperature at the position of S 106 IR obtained from the [C I] excitation is high (>500 K), resulting
in substantial population of the energetically higher
state;
the analysis of the mid- and high-J CO excitation confirms the higher
temperature at S 106 IR.
At this position, the [O I] 63 μm line is the most important cooling line, followed by other
atomic FIR lines ([O III] 52 μm, [C II] 158 μm) and high-J CO lines, which are more efficient coolants compared to [C I] 2
1
and 1
0. We compare the observed line ratios to plane-parallel
PDR model predictions and obtain consistent results for UV fluxes
spanning a range from 102 to 103.5 G0 and densities
around 105 cm-3 only at positions away from S 106 IR. Towards S 106 IR, we estimate a density of at least
at
temperatures between 200 and 500 K from non-LTE modelling of the CO 16
15/14
13 ratio and the CO 7
6 intensity. Our new
observations support the picture drawn in the first part of this
serie of papers that high-density (
cm-3) clumps with
a hot PDR surface are embedded in low- to medium density gas
(
cm-3).
Key words: ISM: atoms / ISM: clouds / ISM: individual objects: S 106 / ISM: structure / radio lines: ISM
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.