Issue |
A&A
Volume 406, Number 1, July IV 2003
|
|
---|---|---|
Page(s) | 65 - 73 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20030793 | |
Published online | 17 November 2003 |
Outflowing material in the
= 4.92 BAL QSO
SDSS J160501.21-011220.0
*
1
NCRA, Post Bag 3, Ganeshkhind, Pune 411 007, India e-mail: neeraj@ncra.tifr.res.in
2
IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India e-mail: anand@iucaa.ernet.in
3
Institut d'Astrophysique de Paris – CNRS, 98bis Boulevard Arago, 75014 Paris, France
4
LERMA, Observatoire de Paris, 61 rue de l'Observatoire, 75014 Paris, France e-mail: petitjean@iap.fr
5
European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago, Chile e-mail: cledoux@eso.org
R. Srianand
Received:
17
January
2003
Accepted:
6
May
2003
We present the analysis of broad absorption lines (BALs) seen in the
spectrum of the zem 4.92 QSO SDSS J160501.21-011220.0.
Our high spectral resolution UVES spectrum shows two well-detached
absorption line systems at zabs = 4.685 and 4.855. The system at
zabs = 4.855 covers the background source completely, suggesting
that the gas is located outside the broad emission line region.
On the contrary, the system at zabs = 4.685, which occults only the continuum
source, has a covering factor of the order of 0.9.
Physical conditions are investigated in the BAL system
at zabs = 4.855 using detailed photoionization models.
The observed H i absorption line together with the limits on C ii and Si ii
absorptions suggest that 16 < log N(H i) (cm-2) < 17 in this system.
Comparison with models show that the observed column densities of
N v , Si iv and C iv in this system require that
nitrogen is underabundant by more than a factor of 3 compared to
silicon if the ionizing radiation is similar to a typical
QSO spectrum. This is contrary to what is usually derived for the
emission line gas in QSOs.
We show that the relative suppression in the N v column density can be
explained for Solar abundance ratios or abundance ratios typical
of Starburst abundances if an ionizing spectrum devoid of X-rays is
used instead. Thus, if the composition of BAL is
like that of
the emission line regions it is most likely that the cloud sees
a spectrum devoid of X-rays similar to what we observe from this QSO. This is
consistent with the fact that none of our models have high
Compton optical depths to remove X-rays from the QSO.
Similar arguments lead to the conclusion that the system at zabs = 4.685
as well is not Compton thick.
Using simple Eddington arguments we show that the mass of the central
black hole is ∼
. This suggests that the
accretion onto a seed black hole must have started as early as
11.
Key words: quasars: absorption lines / quasars: individual: SDSS J160501.21-011220.0
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.