Issue |
A&A
Volume 404, Number 3, June IV 2003
|
|
---|---|---|
Page(s) | 991 - 996 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20030534 | |
Published online | 06 June 2003 |
The impact of radiation and wind momenta on mass transfer in massive close binary systems
Sterrenkundig Instituut, Universiteit Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands
Corresponding author: L. Dessart, luc@mpa-garching.mpg.de
Received:
9
January
2003
Accepted:
21
March
2003
We investigate to what extent the radiation and stellar wind momenta
in a massive close binary system can remove part of the matter flowing
from one towards the other star during a mass transfer phase.
We perform radiation-hydrodynamics simulations in the
co-rotating frame of a binary system made-up of two main sequence
stars of 27 and 26
in a 4 day orbit.
We study the interaction of the winds of both stars, and of their
photons, with the accretion stream
originating from the Roche-lobe filling component.
For our simulation, we adopt a mass transfer rate of 5
10-6
yr-1,
a mid-point in the range of values during massive binary star evolution.
Our simulations show that even for such moderate mass transfer rates, the
wind and radiative momenta do not alter the dynamics of the
accretion stream which is observed to follow essentially ballistic trajectories.
Such a conclusion is reinforced for higher mass transfer rates because
of the increased stream density and the correspondingly reduced
radiation force. We anticipate that the radiation and wind momenta
will affect the accretion stream only when its density is comparable
to the wind's, a situation wherein the mass transfer rate is
vanishingly small and irrelevant for binary star evolution. Alternatively,
such reduced accretion stream density could be obtained from spatial
dilution in wider systems, potentially leading to non-conservative mass
transfer.
Key words: stars: early-type / stars: winds, outflows / stars: binaries: general / hydrodynamics
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.