Issue |
A&A
Volume 403, Number 3, June I 2003
|
|
---|---|---|
Page(s) | 1135 - 1149 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20030401 | |
Published online | 23 May 2003 |
Modelling the rotational modulation of the Sun as a star
1
INAF, Osservatorio Astrofisico di Catania, Via Santa Sofia, 78, Città Universitaria, 95123, Catania, Italy
2
Dipartimento di Fisica e Astronomia, Università degli Studi, Via Santa Sofia, 78, Città Universitaria, 95123, Catania, Italy
3
LAM, Laboratoire d'Astrophysique de Marseille, BP 8, 13376 Marseille Cedex 12, France e-mail: mrodono@ct.astro.it;ipagano@ct.astro.it;pierre.barge@oamp.fr;antoine.llebaria@oamp.fr
Corresponding author: A. F. Lanza, nlanza@ct.astro.it
Received:
19
November
2002
Accepted:
7
March
2003
We analyse the time variability of the total solar irradiance (TSI)
as measured by VIRGO/SoHO in order to model the variability of the Sun
as a star.
Apart from the phases near the minimum at the beginning of activity cycle 23, the
period of the rotational modulation is significantly different from the solar
synodic period as a consequence of the growth and decay of active regions
on time scales shorter than a solar rotation. In order to model the
variability of the TSI,
we have considered the contributions of discrete active regions and a uniformly distributed background emission.
To reproduce the rotational modulation of the TSI, we used three active regions, the areas and coordinates of which were
changed every seven days to account for their evolution. The simultaneous
presence of dark spots and bright faculae was considered by means of
appropriate contrast functions which took into account the observed center-to-limb dependence of their contrast with respect to the unperturbed
photosphere. The method proved to be capable of modelling the variability of
the TSI on time scales going from days up to the solar cycle.
The relative amplitude of the residuals was of the
order of
with the larger values observed during the
phases of maximum solar activity of cycle 23.
The application of a similar technique to solar-like stars, such as those that
will be observed by the next generation of space-borne photometers,
should allow us to minimize the effects of stellar
magnetic activity on the detection of planetary transits. Moreover, the availability of long-term
highly accurate light curves will allow us to measure stellar rotation period,
detect
stellar activity cycles, and derive information on
the inclination of the stellar rotation axis. The location of the active
regions and their irradiance properties can also be retrieved with moderate
accuracy
from single-band light curves. However, a combination of multi-band photometry
and spectroscopy will allow us to constrain some of the free parameters of the model and improve the mapping of stellar surfaces.
Key words: Sun: activity / Sun: rotation / stars: activity / stars: rotation / stars: planetary systems
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.