Issue |
A&A
Volume 403, Number 3, June I 2003
|
|
---|---|---|
Page(s) | 1031 - 1044 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20030432 | |
Published online | 23 May 2003 |
Multi-frequency polarimetry of the Galactic radio background around 350 MHz
I. A region in Auriga around l = 161°, b = 16°
1
Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands
2
Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: katgert@strw.leidenuniv.nl
3
ASTRON, PO Box 2, 7990 AA Dwingeloo, The Netherlands e-mail: ger@astron.nl
4
Kapteyn Institute, PO Box 800, 9700 AV Groningen, The Netherlands
Corresponding author: M. Haverkorn, mhaverkorn@cfa.harvard.edu
Received:
14
November
2002
Accepted:
21
March
2003
With the Westerbork Synthesis Radio Telescope (WSRT), multi-frequency
polarimetric images were taken of the diffuse radio synchrotron
background in a ~ region centered on
in the constellation of Auriga. The observations were
done simultaneously in 5 frequency bands, from 341 MHz to 375 MHz, and
have a resolution of ~
cosec δ. The polarized
intensity P and polarization angle ϕ show ubiquitous
structure on arcminute and degree scales, with polarized brightness
temperatures up to about 13 K. On the other hand, no structure at all
is observed in total intensity I to an rms limit of 1.3 K,
indicating that the structure in the polarized radiation must be due to
Faraday rotation and depolarization mostly in the warm component of
the nearby Galactic interstellar medium (ISM). Different
depolarization processes create structure in polarized intensity P. Beam depolarization creates “depolarization canals” of one beam
wide, while depth depolarization is thought to be responsible for
creating most of the structure on scales larger than a beam width.
Rotation measures (RM) can be reliably determined, and are in the
range
rad m-2 with a non-zero average
rad m-2. The distribution of RMs on the sky shows both abrupt
changes on the scales of the beam and a gradient in the direction of
positive Galactic longitude of ~1 rad m-2 per degree. The
gradient and average RM are consistent with a regular magnetic field
of ~
G which has a pitch angle of
°. There are
13 extragalactic sources in the field for which RMs could be
derived, and those have
rad m-2, with an estimated
intrinsic source contribution of ~3.6 rad m-2. The RMs of the
extragalactic sources show a gradient that is about 3 times larger
than the gradient in the RMs of the diffuse emission and that is
approximately in Galactic latitude. This difference is ascribed to a
vastly different effective length of the line of sight. The RMs of
the extragalactic sources also show a sign reversal which implies a
reversal of the magnetic field across the region on scales larger than
about ten degrees. The observations are interpreted in terms of a
simple single-cell-size model of the warm ISM which contains gas and
magnetic fields, with a polarized background. The observations are
best fitted with a cell size of 10 to 20 pc and a ratio of random to
regular magnetic fields
. The
polarization horizon, beyond which most diffuse polarized emission is
depolarized, is estimated to be at a distance of about 600 pc.
Key words: magnetic fields / polarization / techniques: polarimetric / ISM: magnetic fields / ISM: structure / radio continuum: ISM
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.