Issue |
A&A
Volume 403, Number 2, May IV 2003
|
|
---|---|---|
Page(s) | 625 - 635 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20030349 | |
Published online | 06 May 2003 |
Maximum mass-loss rates of line-driven winds of massive stars
1
Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Leuven, Belgium
2
Astronomical Institute, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands
3
SRON Laboratory, for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
Corresponding author: C. Aerts, conny@ster.kuleuven.ac.be
Received:
20
December
2002
Accepted:
3
March
2003
We develop a theoretical treatment that allows us to determine the
maximum mass-loss rate of a hot rotating star with a wind that is
accelerated by radiation pressure due to spectral lines, taking into account
finite disk correction as well as the effect of photon tiring but neglecting
multiple scattering. The maximum mass-loss rate of a star is obtained by
subsequent numerical integrations of the momentum equation from an assumed
position of the sonic point onwards for increasing values
of the mass loss, until the wind can no longer escape. For stars rotating
below 80% of the critical velocity the decrease in the velocity far out in the
wind due to the maximisation of the mass loss is negligible. Stars rotating at
>
of the critical speed have a kinked velocity law connected with the
highest possible mass-loss rate. In such cases the wind velocity increases up to
typically a few stellar radii, and decreases subsequently almost ballistically
outwards. In these cases the terminal wind velocity is much smaller than the
maximum wind velocity. For O-type main-sequence stars, the maximum mass-loss
rates derived from our formalism are somewhat smaller than those derived for
self-regulated line-driven winds including multiple scattering. For B-type
supergiants, however, the maximum mass-loss rate is higher by about a factor 1.5–2.
Including rotation, but without gravity darkening, results in a maximum
mass-loss rate that is twice as high as for a non-rotating star.
Key words: stars: early-type / stars: mass-loss / stars: winds, outflows / stars: evolution
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.