Issue |
A&A
Volume 398, Number 2, February I 2003
|
|
---|---|---|
Page(s) | 677 - 685 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20021679 | |
Published online | 21 January 2003 |
A photometric mode identification method, including an improved non-adiabatic treatment of the atmosphere*
1
Institut d'Astrophysique et de Géophysique de l'Université de Liège, allée du 6 Août 17, 4000 Liège, Belgium
2
Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200, 3001 Leuven, Belgium
Corresponding author: M.-A. Dupret, madupret@ulg.ac.be
Received:
17
September
2002
Accepted:
7
November
2002
We present an improved version of the method of photometric mode identification of Heynderickx et al. ([CITE]). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. ([CITE]). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the β Cephei star EN (16) Lac. Besides identifying the degree of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter α (a procedure we label non-adiabatic asteroseismology).
Key words: stars: oscillations / stars: atmospheres / stars: variables: general
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.