Issue |
A&A
Volume 398, Number 1, January IV 2003
|
|
---|---|---|
Page(s) | 203 - 211 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20021577 | |
Published online | 14 January 2003 |
High-resolution X-ray spectroscopy of τ Scorpii (B0.2V) with XMM-Newton *
1
SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
2
Astronomical Institute “Anton Pannekoek”, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
3
Dept. of Astronomy, University of Wisconsin at Madison, 6251 Sterling Hall, North Charter Str., Madison, WI 53706, USA
4
Paul Scherrer Institut, Würenlingen & Villigen, 5232 Villigen PSI, Switzerland
Corresponding author: R. Mewe, r.mewe@sron.nl
Received:
24
July
2002
Accepted:
30
October
2002
We report the analysis of the first high-resolution X-ray spectrum of the
B0.2V star τ Scorpii obtained with the Reflection Grating
Spectrometers (rgs) and the epic-mos ccd spectrometers on board
XMM-Newton. The spectrum exhibits bright emission lines of the H- and
He-like ions of C, N, O, Ne, Mg, and Si, as well as Fe xvii & Fe
xviii lines. Line fluxes have been determined.
Simultaneous fits to the rgs and epic spectra were used to obtain four
plasma temperatures, emission measures, and the overall elemental
abundances.
This multi-temperature fitting yielded temperatures of 1.6,
5.2, 8.2, and 20 MK. These temperatures are confirmed by DEM modelling.
The nitrogen lines are
relatively strong: the N/O abundance ratio is about 3
solar.
No indication of a solar-type “FIP effect” was found for the other elements.
According to the derived models the X-ray luminosity in the energy range 0.3–10 keV is
= 3.2
1031 erg s-1 at a distance of 132 pc.
The sensitivity of the He-like forbidden and intercombination lines to a
strong ultraviolet radiation field is used to derive upper limits to the
radial distances at which lines of Mg xi, Ne ix, O vii,
and N vi originate. The results suggest that the soft
X-rays (
8 MK) originate from shocks low in the wind that are produced by the common
mechanism of radiation line-driven instabilities. This is consistent with
the observed emission line profiles that are much narrower (
500 km s-1)
than the broad lines (up to 1500 km s-1) observed high up in the wind of
ζ Puppis. The hot (~20–40 MK) component may be explained by a
model involving dense clumps embedded in a wind which sweeps past them at high
relative velocity (~1400–1700 km s-1). Such an interaction
would produce the strong shocks required.
Key words: stars: individual: τ Scorpii / stars: coronae / stars: early-type / stars: abundances / X-rays: stars
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.