Issue |
A&A
Volume 397, Number 2, January II 2003
|
|
---|---|---|
Page(s) | 381 - 391 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20021526 | |
Published online | 17 December 2002 |
Self-similar condensation of rotating magnetized self-gravitating isothermal filaments
1
Laboratoire de radioastronomie millimétrique, UMR 8540 du CNRS, École normale supérieure et Observatoire de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France
2
Department of Physics and Astronomy, Cardiff University, PO Box 913, 5 The Parade, Cardiff CF24 3YB, Wales, UK
Corresponding author: P. Hennebelle, patrick.hennebelle@ens.fr
Received:
1
February
2002
Accepted:
11
October
2002
Ordinary differential equations describing the self-similar collapse of a rotating, magnetized, self-gravitating and isothermal filament are derived. Explicit homologous solutions are studied with special emphasis on the bifurcation that occurs at the magnetosonic critical point. It is shown that there is a critical value for the toroidal magnetic field slope at the origin above which no bifurcation occurs, the solution remains homologous, and below which the density and the poloidal magnetic field tend to zero at large radius (envelope) whereas the toroidal magnetic field and azimuthal velocity relax towards a constant value. A series of spatial profiles of density, velocity and magnetic field, potentially useful for comparison with numerical or observational studies, is obtained numerically and discussed.
Key words: accretion, accretion disks / gravitation / hydrodynamics / magnetohydrodynamics (MHD) / ISM: clouds
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.