Issue |
A&A
Volume 394, Number 3, November II 2002
|
|
---|---|---|
Page(s) | 1111 - 1116 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20021247 | |
Published online | 21 October 2002 |
Filling factors and magnetic field strengths of nanoflare-heated coronal active regions: Yohkoh and MDI observations
1
Department of Physics, UMIST, Manchester M60 1QD, UK e-mail: rjain@suraj.phy.umist.ac.uk
2
Center for Solar Physics and Space Weather, Catholic University of America, Washington, DC 20064, USA e-mail: yashiro@cdaw.gsfc.nasa.gov
Corresponding author: R. Jain, rjain@suraj.phy.umist.ac.uk
Received:
10
July
2002
Accepted:
26
August
2002
The scaling laws describing the relationship between thermal and magnetic properties of active regions are derived using the concept that solar coronal active regions are heated by numerous small flare-like events (nanoflares). Thus, a coronal active region is viewed as an ensemble of hot elementary filaments created within the coronal magnetic field by random impulsive heating events. The scaling laws obtained are governed by the global energy balance of the active regions and are independent of the details of any heating process (such as the energy of individual heating event or energy spectral index of nanoflares). We examined 61 coronal active regions observed with the soft X-ray telescope aboard Yohkoh and found that such a model yields filling factors (defined as the ratio of the volume of hot plasma to the total volume) in the range 0.002 to 0.015 and magnetic field strengths of 20 G to 40 G. The analysis determining the mean magnetic field strength and filling factors of a large number of coronal active regions, observed by Yohkoh, based on nanoflare-heating concept is the first such analysis. We also examine 24 active regions observed with the Michelson Doppler Imager aboard Solar and Heliospheric Observatory and find that the total thermal energy content Eth is related to the total magnetic flux ϕ by a power-law index of 1.24 i.e. . The thermal pressure pth of the active regions is related to the magnetic flux density Bp obtained from MDI measurement as: .
Key words: Sun: activity / Sun: corona / Sun: magnetic fields
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.