Issue |
A&A
Volume 393, Number 2, October II 2002
|
|
---|---|---|
Page(s) | 693 - 701 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20011026 | |
Published online | 23 September 2002 |
Diffusion velocity and reactive thermal conductivity for shock waves propagating in the hydrogen gas
Observatoire de Haute-Provence – CNRS, 04870 Saint-Michel l'Observatoire, France
Corresponding author: H. Le Coroller, coroller@obs-hp.fr
Received:
5
June
2002
Accepted:
12
July
2002
Large gradients of the temperature and ionization degree
in shock waves lead to diffusion of ions with respect to neutral atoms.
In order to take into account this phenomenon, we modify the fluid dynamics equations
of the shock wave model described by Fadeyev
& Gillet ([CITE]).
The principal goal of our study was to determine
the reactive thermal conductivity.
We obtained the non-LTE equation for the reactive thermal
conductivity
for the nonequilibrium two–temperature gas
consisting of heavy particles (ions and neutral atoms) and free electrons.
For the single temperature gas in LTE our expressions
become the same as those
given by Devoto ([CITE]) and Nowak & Ulmschneider ([CITE]).
Finally, we discuss the importance of the heat flux induced by the reactive conductivity
for shock waves propagating through hydrogen gas with typical properties for atmospheres of pulsating
stars ( and
). The reactive
conductivity could be efficient behind the shock front, at the end of the thermalization zone when
ionization process brutally occurs. When the gas is very dense, the reactive heat flux is of the same order
of magnitude as the classical electronic heat flux.
Key words: conduction / shock waves / hydrodynamics / stars: atmospheres
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.