Issue |
A&A
Volume 387, Number 1, May III 2002
|
|
---|---|---|
Page(s) | 201 - 214 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20020347 | |
Published online | 15 May 2002 |
X-ray and optical observations of : A new intermediate polar with soft X-ray emission*
1
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany
2
Observatoire de Strasbourg, 11, rue de l'Universite, 67000 Strasbourg, France
3
Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany
Corresponding author: F. Haberl, fwh@mpe.mpg.de
Received:
21
December
2001
Accepted:
5
March
2002
We report the identification of the ROSAT all-sky survey source as
new intermediate polar and present the results from follow-up optical and
X-ray observations. The source shows pulsations with a period of 693 s
both in the optical and X-ray light curves and the detection of a synodic
frequency strongly suggests that this is the rotation period of the white
dwarf. Although the one day aliasing and the sparse optical data
coverage does not allow to unambiguously identify the orbital period,
the most likely values of 9.37 h and 6.72 h add to the intermediate
polars with the longest orbital periods known.
The optical spectrum displays features from the late type secondary and
shows the presence of broad absorption lines at
H and higher order Balmer lines which may be a signature of the
white dwarf atmosphere, very similar to
(RX J0028.8+5917 Bonnet-Bidaud et al. [CITE]).
The average X-ray spectra as obtained by the EPIC instruments on board
XMM-Newton show hard emission typical for this class of objects but also
the presence of soft blackbody-like emission similar to that seen from soft intermediate
polars and thought to arise from the white dwarf surface heated by the
hard X-rays. The best fit model comprises thermal emission from multi-temperature
plasma in collisional ionization equilibrium with a
continuous temperature distribution up to a maximum of ~60 keV,
an Fe fluorescence line at 6.4 keV and with equivalent
width of 260 eV and a blackbody component with kT of 86 eV. The hard X-ray emission
is absorbed by matter covering 47% of the X-ray source with an equivalent
hydrogen density of
. The remaining hard emission is absorbed
by a much reduced column density of
cm-2 as is the soft blackbody emission.
Pulse-phase spectroscopy around spin maximum and minimum reveals that the flux
variations are mainly caused by a change in the temperature distribution with
higher intensity (a factor of ~3 in the 1 keV emission) seen from the lower
temperature plasma during spin maximum. The absorption in the high column
density matter only decreases marginally during spin maximum. The emission
characteristics are consistent with the accretion curtain scenario and features
in the X-ray pulse profiles indicate that we observe one pole of the white dwarf
and our line of sight is nearly parallel to the curtain at spin minimum while
at maximum we have a more direct view to the cooling post shock accretion flow.
Key words: binaries: close / stars: individual: / stars: novae, cataclysmic variables / X-rays: stars
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.