Issue |
A&A
Volume 386, Number 2, May I 2002
|
|
---|---|---|
Page(s) | 583 - 605 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20020301 | |
Published online | 15 May 2002 |
Long-term starspot evolution, activity cycle and orbital period variation of RT Lacertae
1
Osservatorio Astrofisico di Catania of the Istituto Nazionale di Astrofisica, Italy e-mail: scatalano, mrodono@ct.astro.it
2
Dipartimento di Fisica e Astronomia dell'Università degli Studi di Catania, Via S. Sofia, 78 – 95123 Catania, Italy,
3
Ege University Observatory, Bornova, İzmir, Turkey e-mail: ibanoglu, evren, tas, cakirli@astronomy.sci.ege.edu.tr
Corresponding author: A. F. Lanza, nla@ct.astro.it
Received:
17
October
2001
Accepted:
20
February
2002
A sequence of V-band light curves of the active close binary RT Lacertae
(G5+G9 IV),
extending from 1965 to 2000, is presented and analysed
to derive the spot distribution and evolution on the component
stars. In our modelling approach, the Roche geometry and Kurucz's atmospheric
models were adopted. The resulting maps of the spot surface distribution
were regularized
by means of the Maximum Entropy and Tikhonov criteria to take full advantage of the increased geometrical resolution during eclipses. By comparing
the maps obtained with these two criteria, it was possible to
discriminate between surface features actually required by the data and
artifacts introduced by the regularization process. Satisfactory fits
were obtained assuming spots on both components and
the unspotted V-band luminosity ratio: . The more massive G5 primary appears to be the most active star
in the system and its spotted areas are mainly responsible for the light curve distortions.
The yearly spot distributions on both components indicate that their spot patterns
consist of two components, one uniformly and the other non-uniformly
distributed in longitude,
the latter suggesting the presence of preferential longitudes. In particular,
spots are concentrated around the substellar points and their antipodes on both
stars. The eclipse scanning reveals spots with diameters of ~
, or possibly
smaller, on the hemisphere of the primary star being occulted.
The primary shows clear evidence for a short-term activity
cycle with a period of ~8.5 yr and a possible long-term cycle with a
period of approximately 35 yr.
The variation of the spot migration rate
may be related with surface differential rotation, with a lower limit of
. The G9 IV secondary
does not show evidence for an activity cycle, its spot coverage appearing rather
constant at ~
% of its surface. The relative
amplitude of its surface
differential rotation, as indicated by the variation of the spot migration rate, is
.
The variation of the orbital period shows a correlation with the activity
level of the primary component.
Specifically, the decreases of the orbital period appear to be associated
with minimum spottedness and sizeable changes of the surface spot
distribution that may be related to increases of the rotation rate of the
spot pattern. Conversely, an episode of increase of the orbital period was related to an increase of the spotted area on the primary star.
Such results support
the recently proposed models that connect the perturbations of the orbital dynamics with the variation of the figure of equilibrium of the
active components, due to the operation of non-linear hydromagnetic dynamos in their extended convective envelopes.
Key words: stars: activity / binaries: close / binaries: eclipsing / stars: individual: RT Lacertae / starspots
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.