Issue |
A&A
Volume 385, Number 3, April III 2002
|
|
---|---|---|
Page(s) | 909 - 920 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20020180 | |
Published online | 15 April 2002 |
Statistical study of C
O dense cloud cores and star formation
1
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany
2
Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
Corresponding author: K. Tachihara, tatihara@mpe.mpg.de
Received:
31
May
2001
Accepted:
22
January
2002
Dense molecular cloud cores are studied statistically in nearby ( pc) star-forming regions (SFRs) that show various modes of
star formation. As a result of the C18O survey of NANTEN and the
4 m radio telescopes of Nagoya University, 179 cores have been
collected in the SFRs of Taurus, the ρ Oph cloud, the Ophiuchus
north region, the Lupus clouds, L1333, the Corona Australis cloud,
Southern Coalsack, and the Pipe nebula, and their physical properties
investigated. According to their star-formation activities, the cores
are divided into 3 categories as 136 starless, 36 star-forming, and 7
cluster-forming cores. It is found that cores with active star
formation tend to have larger
,
, and M.
The mass function of the cores does not appear to follow a single
power-law function, but the power-law index is subject to change with
the mass range. The average star-formation efficiency (SFE) of the
cores is roughly ~10%, and the expected stellar mass function
from the SFE approximates the stellar initial-mass function (IMF).
Virial analysis shows that the star-forming cores are gravitationally
more bound, with smaller virial ratios than the starless cores, while
cluster-forming cores are marginally bound with moderate virial
ratios. We found that turbulent decay is indicated by diminishing
from the starless to the star-forming cores. It is
suggested that the turbulent decay is necessary for star formation,
while formed star clusters provide the turbulence and make the cores
unbound. Molecular clouds associated with the clusters tend to have
head-tail structures and the cluster formation takes place at the
head. This implies that the clouds are affected by external shocks,
which have triggered cluster formation. We suggest that star and
cluster formation are strongly controlled by the initial amount of
internal turbulence and the interaction with the external shocks.
Key words: ISM: clouds / ISM: kinematics and dynamics / ISM: molecules / radio lines: ISM / stars: formation
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.