Issue |
A&A
Volume 383, Number 2, FebruaryIV 2002
|
|
---|---|---|
Page(s) | 502 - 518 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20011531 | |
Published online | 15 February 2002 |
Active star formation in the large Bok globule CB 34*
1
Armagh Observatory, Armagh BT61 9DG, Northern Ireland, UK e-mail: mds@star.arm.ac.uk
2
Centro Astronomico Hispano-Aleman, 04080 Almeria, Spain e-mail: gredel@caha.es
3
MPI für Radioastronomie, Auf dem Hügel 69, 53121, Bonn, Germany e-mail: tstanke@mpifr-bonn.mpg.de
4
Joint Astronomy Centre 660 N. A'Ohoku Place, University Park, Hilo, Hawaii 96720, USA e-mail: c.davis@jach.hawaii.edu
Corresponding author: T. Khanzadyan, tig@star.arm.ac.uk
Received:
20
June
2001
Accepted:
29
October
2001
We present near-infrared and millimetre observations
of the large Bok globule CB 34. Two long parallel trails of H2
knots are discovered on wide-field images in the 1–0 S(1)
2.12 μm emission line. These parsec scale H2 jets extend to the
edge of the dark globule where they disappear without the trace of
bow shocks. This suggests that the outflows physically extend
into a lower density ambient medium where their terminating
bows are beyond present detection limits. The two outflows are
extremely well collimated and parallel to within 3°. The
outflow mechanical luminosity, derived from CO measurements, and the
shocked luminosity, estimated from the H2 emission, are similar,
consistent with jet-driven non-evolving outflow structure. The jets
appear to originate from the densest cores, as observed in
H13CO+ line emission.
A central concentration of reddened stars and a lower density halo of
less reddened stars within the globule are revealed by JHK photometry.
Disordered motions are observed in the CO line velocity
channel maps and can be driven by the power of the outflows
emanating from dense cores. We sketch a picture for the star
formation history of the globule in which two star phases have been formed.
A weak diffuse emission halo is detected in the near infrared with
colours consistent with either scattered light or a ro-vibrational
H2 cascade. We propose that
the halo is produced by ongoing H2 formation. Cloud
evolution and halo H2 formation timescales are then both a few
105 yr. Thus, we may be witnessing the formation of a molecular cloud
out of diffuse atomic gas. This supports a scheme in which this
Bok globule has formed independently rather than through dislocation from
a nearby molecular cloud.
Key words: infrared: ISM / stars: formation / ISM: jets and outflows / ISM: clouds
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.