Issue |
A&A
Volume 383, Number 2, FebruaryIV 2002
|
|
---|---|---|
Page(s) | 603 - 613 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20011765 | |
Published online | 15 February 2002 |
ISO ammonia line absorption reveals a layer of hot gas veiling Sgr B2*
1
Observatoire de Bordeaux, BP 89, 33270 Floirac, France
2
Laboratoire d'Astrophysique, Observatoire de Grenoble – BP 53, 38041 Grenoble Cedex 09, France
3
Laboratoire d'Astrophysique de Marseille, CNRS & Université de Provence, BP 8, 13376 Marseille Cedex 12, France
4
Osservatorio di Arcetri, 5 L. go E. Fermi, 50125 Firenze, Italy
5
Rutherford Appleton Laboratory, Chilton, Didcot OX1 3RH, UK
6
CESR CNRS-UPS, BP 4346, 31028 Toulouse Cedex 04, France
7
Institut d'Astrophysique Spatiale, 91405 Orsay, France
8
ISO Data Center, Astrophysics Division, Space Science Department of ESA, Villafranca del castillo, PO Box 50727, I28080 Madrid, Spain
9
Space Science Department of ESA, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands
Corresponding author: C. Ceccarelli, Ceccarelli.Cecilia@observ.u-bordeaux.fr
Received:
25
September
2001
Accepted:
20
November
2001
We report the first results of the unbiased spectral high resolution
survey obtained towards Sgr B2 with the Long Wavelength Spectrometer
on board ISO.
The survey detected more than one hundreds lines from several molecules.
Ammonia is the molecule with the largest number (21)
of detected lines in the survey.
We detected NH3 transitions from levels with energies from 45 to
500 cm-1. The detected transitions are from both para and
ortho ammonia and metastable and non-metastable levels.
All the ammonia lines are in absortion against the
FIR continuum of Sgr B2.
With such a large number of detected lines in such a large range
of energy levels, we could very efficiently constrain the main
parameters of the absorbing gas layer.
The gas is at () K and has a density lower than
104 cm-3.
The total NH3 column density in the layer is
cm-2, equally shared between ortho and para ammonia.
Given the derived relatively high gas temperature and ammonia column density,
our observations
support the hypothesis previously proposed of a layer of shocked gas
between us and Sgr B2.
We also discuss previous observations of far infrared
line absorption from other molecules, like H2O and HF, in the light
of this hot absorbing layer.
If the absorption is done by the hot absorbing layer rather than by the
warm envelope surrounding Sgr B2, as was previously supposed
in order to interpret
the mentioned observations, the derived H2O and HF abundances are
one order of magitude larger than previously estimated.
Yet, the present H2O and HF observations do not allow one to disentangle the absorption
from the hot layer against the warm envelope.
Our conclusions are hence that care should be applied when interpreting
the absorption observations in Sgr B2, as the hot layer clearly
seen in the ammonia transitions may substantially
contribute to the absorption.
Key words: infrared: ISM: lines and bands / ISM: individual: Sgr B2 / stars: formation / techniques: spectroscopic
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.