Issue |
A&A
Volume 382, Number 3, FebruaryII 2002
|
|
---|---|---|
Page(s) | 947 - 973 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20011656 | |
Published online | 15 February 2002 |
X-ray bursts at extreme mass accretion rates from GX 17+2
1
SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands e-mail: M.Mendez@sron.nl
2
Astronomical Institute, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands
3
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, and Center for High Energy Astrophysics, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: homan@merate.mi.astro.it; michiel@astro.uva.nl
4
Department of Physics and Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02138, USA e-mail: lewin@space.mit.edu
Corresponding author: E. Kuulkers at SRON, E.Kuulkers@sron.nl
Received:
23
May
2001
Accepted:
15
November
2001
We report on ten type I X-ray bursts originating from GX 17+2 in data obtained with the
RXTE/PCA in 1996–2000. Three bursts were short in duration (~10 s), whereas the others
lasted for ~6–25 min. All bursts showed spectral softening during their decay. There is no evidence
for high-frequency (>100 Hz) oscillations at any phase of the bursts.
We see no correlations
of the burst properties with respect to the persistent X-ray spectral properties, suggesting
that in GX 17+2 the properties of the bursts do not correlate with inferred mass accretion rate.
The presence of short bursts in GX 17+2 (and similar bright X-ray sources) is not accounted for
in the current X-ray bursts theories at the high mass accretion rates encountered in this source.
We obtain satisfactory results if we model the burst emission with a black body,
after subtraction of the persistent pre-burst emission. The two-component spectral model does not fit
the total burst emission whenever there is a black-body component present
in the persistent emission. We conclude that in those cases the black-body contribution from the
persistent emission is also present during the burst. This implies that, contrary to previous suggestions,
the burst emission does not arise from the same site as the persistent black-body emission.
The black-body component of the persistent emission is consistent with being produced in
an expanded boundary layer, as indicated by recent theoretical work.
Five of the long bursts showed evidence of radius expansion of the neutron star
photosphere (independent of the spectral analysis method used),
presumably due to the burst luminosity reaching the Eddington value.
When the burst luminosity is close to the Eddington value, slight deviations from pure black-body radiation
are seen at energies below 10 keV. Similar deviations have been seen during (long) X-ray bursts from
other sources; they can not be explained by spectral hardening models.
The total persistent flux just before and after the radius expansion bursts
is inferred to be up to a factor of 2 higher than the net peak flux of the burst.
If both the burst and persistent emission are radiated isotropically,
this would imply that the persistent emission is up to a factor of 2 higher than the Eddington
luminosity. This is unlikely and we suggest that the persistent luminosity is close to the
Eddington luminosity and that the burst emission is (highly) anisotropic (
).
Assuming that the net burst peak fluxes equal the Eddington limit,
applying standard burst parameters (1.4
neutron star,
cosmic composition, electron scattering opacity appropriate for high temperatures), and
taking into account gravitational redshift and spectral hardening,
we derive a distance to GX 17+2 of ~8 kpc, with an
uncertainty of up to ~30%.
Key words: accretion, accretion disks / binaries: close / stars: individual (GX 17+2) / stars: neutron / X-rays: bursts
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.