Issue |
A&A
Volume 382, Number 2, FebruaryI 2002
|
|
---|---|---|
Page(s) | 758 - 767 | |
Section | Section $secnum inconnue | |
DOI | https://doi.org/10.1051/0004-6361:20011609 | |
Published online | 15 February 2002 |
An efficient parallel tree-code for the simulation of self-gravitating systems*
Dipartimento di Fisica, Universitá di Roma “La Sapienza", P.le Aldo Moro, 5, 00185 – Rome, Italy
Corresponding author: P. Miocchi, miocchi@uniroma1.it
Received:
10
April
2001
Accepted:
5
November
2001
We describe a parallel version of our tree-code for the simulation of self-gravitating systems in Astrophysics. It is based on a dynamic and adaptive method for the domain decomposition, which exploits the hierarchical data arrangement used by the tree-code. It shows low computational costs for the parallelization overhead – less than 4% of the total CPU-time in the tests done – because the domain decomposition is performed “on the fly” during the tree-construction and the portion of the tree that is local to each processor “enriches” itself of remote data only when they are actually needed. The performance of an implementation of the parallel code on a Cray T3E is presented and discussed. They exhibit a very good behaviour of the speedup (=15 with 16 processors and 105 particles) and a rather low load unbalancing (< 10% using up to 16 processors), achieving a high computation speed in the forces evaluation (> 104 particles/sec with 8 processors).
Key words: methods: numerical / methods: N-body simulations / globular clusters: general
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.