Issue |
A&A
Volume 381, Number 1, JanuaryI 2002
|
|
---|---|---|
Page(s) | 32 - 50 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20011488 | |
Published online | 15 January 2002 |
Using Cepheids to determine the galactic abundance gradient*,**
I. The solar neighbourhood
1
Instituto Astronômico e Geofísico, Universidade de São Paulo, Av. Miguel Stefano, 4200 São Paulo SP, Brazil e-mail: sergei@andromeda.iagusp.usp.br
2
Department of Astronomy, Odessa State University, Shevchenko Park, 65014, Odessa, Ukraine e-mail: val@deneb.odessa.ua
3
Odessa Astronomical Observatory and Isaac Newton Institute of Chile, Odessa Branch, Ukraine
4
Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7215, USA, e-mail: luck@fafnir.astr.cwru.edu
5
Visiting Astronomer, Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories which are operated by the Association of Universities for Research in Astronomy, Inc., under contract with the US National Science Foundation
6
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 16, Cambridge, MA 02138, USA e-mail: dbersier@cfa.harvard.edu
7
Special Astrophysical Observatory, Russian Academy of Sciences, Nizhny Arkhyz, Stavropol Territory, 369167, Russia e-mail: valenta@sao.ru; panchuk@sao.ru
8
SAO RAS and Isaac Newton Institute of Chile, SAO RAS Branch, Russia
9
EdIC group, Universidade de São Paulo, São Paulo, Brazil e-mail: ueda@ime.usp.be
Corresponding author: S. M. Andrievsky, scan@deneb.odessa.ua
Received:
31
July
2001
Accepted:
10
October
2001
A number of studies of abundance gradients in the galactic disk have
been performed in recent years. The results obtained are rather disparate:
from no detectable gradient to a rather significant slope of about
-0.1 dex kpc-1. The present study concerns the abundance gradient based
on the spectroscopic analysis of a sample of classical Cepheids. These stars
enable one to obtain reliable abundances of a variety of chemical elements.
Additionally, they have well determined distances which allow an accurate
determination of abundance distributions in the galactic disc. Using 236 high resolution spectra of 77 galactic Cepheids, the radial elemental
distribution in the galactic disc between galactocentric distances in the range
6–11 kpc has been investigated. Gradients for 25 chemical elements (from
carbon to gadolinium) are derived. The following results were obtained in this
study. Almost all investigated elements show rather flat abundance distributions in
the middle part of galactic disc. Typical values for iron-group elements
lie within an interval from
-0.02 to
-0.04 dex kpc-1
(in particular, for iron we obtained d[Fe/H]/d
dex kpc-1).
Similar gradients were also obtained for O, Mg, Al, Si, and Ca.
For sulphur we have found a steeper gradient (-0.05 dex kpc-1). For elements from Zr to Gd we obtained (within the error bars) a near to zero
gradient value. This result is reported for the first time. Those elements whose abundance is not expected to be altered during the early
stellar evolution (e.g. the iron-group elements) show at the solar galactocentric
distance [El/H] values which are essentially solar. Therefore, there is no
apparent reason to consider our Sun as a metal-rich star. The gradient values obtained in the present study indicate that the radial
abundance distribution within 6–11 kpc is quite homogeneous, and this
result favors a galactic model including a bar structure which may induce
radial flows in the disc, and thus may be responsible for abundance
homogenization.
Key words: stars: abundances / stars: supergiants / galaxy: abundances / galaxy: evolution
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.