Issue |
A&A
Volume 380, Number 2, December III 2001
|
|
---|---|---|
Page(s) | 750 - 757 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20011423 | |
Published online | 15 December 2001 |
On Rossby waves and vortices with differential rotation
DSM/DAPNIA/Service d'Astrophysique (CNRS URA 2052), CEA Saclay, 91191 Gif-sur-Yvette, France
Received:
16
June
2000
Accepted:
11
October
2001
We present a simplified model for linearized perturbations in a fluid with both differential rotation and differential vorticity. Without the latter the model reduces to the classical Shearing Sheet used in the description of spiral density waves in astrophysical disks. Without the former it reduces to the β-plane approximation, used in the description of Rossby waves. Retaining both, our model allows one to discuss the coupling between density waves and Rossby waves, resulting in what is known as the "corotation resonance" for density waves. Here we will derive, as a first application of this model, the properties of Rossby waves in a differentially rotating disk. We find that their propagation is quenched by differential rotation: after a limited number of oscillations, a Rossby wave collapses to a singular vortex, as fluid elements are sheared apart by differential rotation. In a Keplerian disk, this number of oscillations is always lower than one. We also describe how, in a similar manner, a vortex is sheared in a very short time.
Key words: accretion, accretion disks / instabilities / hydrodynamics / waves / planetary systems
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.