Issue |
A&A
Volume 378, Number 3, November II 2001
|
|
---|---|---|
Page(s) | 918 - 935 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20011256 | |
Published online | 15 November 2001 |
The Crab pulsar in the 0.75-30 MeV range as seen by CGRO COMPTEL
A coherent high-energy picture from soft X-rays up to high-energy γ-rays
1
SRON -National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
2
Istituto di Fisica Cosmica ed Applicazioni all'Informatica CNR, Via U. La Malfa 153, 90146 Palermo, Italy
3
Max-Planck-Institut für Extraterrestrische Physik, 85741 Garching, Germany
4
Astrophysics Division, European Space Research and Technology Centre, 2200 AG, Noordwijk, The Netherlands
5
Space Science Centre, University of New Hampshire, Durham, NH 03824, USA
Corresponding author: L. Kuiper, L.M.Kuiper@sron.nl
Received:
15
November
2000
Accepted:
4
September
2001
We present the time-averaged characteristics of the Crab pulsar in the 0.75-30 MeV
energy window using data from the imaging Compton Telescope COMPTEL aboard the
Compton Gamma-Ray Observatory (CGRO) collected over its 9 year mission. Exploiting the
exceptionally long COMPTEL exposure on the Crab allowed us to derive significantly improved
COMPTEL spectra for the Crab nebula and pulsar emissions, and for the first time to accurately
determine at low-energy γ-rays the pulse profile as a function of energy.
These timing data, showing the well-known main pulse and second pulse at a phase
separation of ~ with strong bridge emission, are studied together with data
obtained at soft/hard X-ray energies from the ROSAT HRI, BeppoSAX LECS, MECS
and PDS, at soft γ-rays from CGRO BATSE and at high-energy
γ-rays from CGRO EGRET in order to obtain a coherent high-energy picture
of the Crab pulsar from 0.1 keV up to 10 GeV. The morphology of the
pulse profile of the Crab pulsar is continuously changing as a function of energy:
the intensities of both the second pulse and the bridge emission increase relative
to that of the first pulse for increasing energies up to ~
MeV.
Over the COMPTEL energy range above 1 MeV an abrupt morphology change happens: the first
pulse becomes again dominant over the second pulse and the bridge emission loses
significance such that the pulse profile above 30 MeV is similar to the one observed at optical
wavelengths.
A pulse-phase-resolved spectral analysis performed in 7 narrow phase slices consistently
applied over the 0.1 keV-10 GeV energy interval shows that the pulsed emission can
empirically be described with 3 distinct spectral components:
i) a power-law emission component (1 keV-5 GeV; photon index
),
present in the phase intervals of the two pulses; ii) a curved spectral component
required to describe soft (
keV) excess emission present in the same pulse-phase
intervals; iii) a broad curved spectral component reflecting the bridge emission from 0.1 keV to ~
MeV. This broad spectral component extends in phase over the full pulse
profile in an approximately triangular shape, peaking under the second pulse.
Recent model calculations for a three-dimensional pulsar magnetosphere with outer
magnetospheric gap acceleration by Cheng et al. (2000) appear at present most successful
in explaining the above complex high-energy characteristics of the Crab pulsar.
Key words: pulsars: individual: PSR B0531+21 / stars: neutron / supernovae: individual: Crab nebula / gamma rays: observations / X-rays: stars
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.