Issue |
A&A
Volume 378, Number 1, October IV 2001
|
|
---|---|---|
Page(s) | 192 - 213 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20011130 | |
Published online | 15 October 2001 |
Radial mixing in protoplanetary accretion disks
I. Stationary disc models with annealing and carbon combustion
Institut für Theoretische Astrophysik, Universität Heidelberg, Tiergartenstraße 15, 69121 Heidelberg, Germany
Received:
5
January
2001
Accepted:
8
August
2001
The interplay between radial mixing process in protoplanetary accretion discs
with processes leading to destruction or modification of the extinction
properties of abundant dust species has significant consequences for the
properties of the disk. This paper studies the consequences of annealing
amorphous silicate dust at K, of combustion of the carbon
dust component at about
K and of mixing the products into
cold outer disc regions out to 10 AU and beyond. A model calculation in the one-zone approximation for stationary Keplerian
α-disks around a solar-like protostar is combined with a solution of the
equations for annealing of silicate dust grains, for carbon dust oxidation, and
a solution of the diffusion equations for radial mixing of the dust components
in the disc by turbulent flows. It is shown that annealing of amorphous
silicate dust reduces the mass extinction coefficient of the disc matter by
more than an order of magnitude in the warm disc zone. Radial mixing of the
freshly produced crystalline silicate dust into outer disc regions reduces the
opacity of the disc material also in cold disc regions where annealing is not
possible. Mixing of carbon dust free material from the zone of carbon
combustion into outer disc regions also leads to a considerable reduction of
the opacity of the disc material. Radial mixing processes then modify the dust
composition of the outer disc regions and by means of the dependence of the
disk properties (midplane temperature
, viscosity ν, ...) on the
opacity also modify the structure and evolution of a protoplanetary disc.
It is shown that turbulent mixing processes in the protoplanetary accretion
disc of a Solar System like system during its evolution prior to the onset of
the formation of planetary bodies carry material from inner disc regions
AU outwards to at least 10...20 AU. This offers a simple explanation
of the findings that a significant fraction of the cometary silicate dust
grains are crystallised and that the matrix material of primitive meteorites
contains thermally processed crystalline dust material.
Key words: accretion, accretion disks / molecular processes / solar system: formation
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.