Issue |
A&A
Volume 377, Number 3, October III 2001
|
|
---|---|---|
Page(s) | 868 - 897 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20011090 | |
Published online | 15 October 2001 |
Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae
1
Observatorio Astronómico Nacional, Apartado 1143, 28800 Alcalá de Henares, Spain e-mail: bujarrabal,j.alcolea,carrizo@oan.es
2
Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA e-mail: sanchez@eclipse.jpl.nasa.gov
Corresponding author: V. Bujarrabal, bujarrabal@oan.es
Received:
16
February
2001
Accepted:
26
July
2001
We have studied the CO emission from protoplanetary nebulae (PPNe).
Our sample is composed of 37 objects and includes, we think, all well
identified PPNe detected in CO, together with the two yellow hypergiants
emitting in CO and one young PN. We present a summary of the existing CO
data, including accurate new observations of the 12CO and 13CO -0
and
-1 lines in 16 objects.
We identify in the nebulae a slowly expanding shell (represented
in the spectra by a central core) and a fast outflow (corresponding to the
line wings), that in the well studied PPNe is known to be bipolar.
Excluding poor data, we end up with a sample of 32 sources
(including the 16 observed by us); fast flows are detected in 28 of these
nebulae, being absent in only 4. We present a method to estimate from these
data the mass, "scalar" momentum and kinetic energy of the different
components of the molecular outflows.
We argue that the uncertainties of our method can hardly lead to
significant overestimates of these parameters, although
underestimates may be present in not well studied objects.
The total nebular mass is often as high as ~1
, and the mass-loss
rate, that (presumably during the last stages of the AGB phase) originated
the nebula, had typical values ~10-4
yr-1.
The momentum corresponding to this mass ejection process in most studied
nebulae is accurately coincident with the maximum momentum that radiation
pressure, acting through absorption by dust grains, is able to supply
(under expected conditions). We estimate that this high-efficiency process
lasts about 1000-10 000 yr, after which the star has
ejected a good fraction of its mass and the AGB phase ends. On the other
hand, the fast molecular outflows, that have probably been accelerated by
shock interaction with axial post-AGB jets, carry a significant fraction of
the nebular mass, with a very high momentum (in most cases between
1037 and 1040 g cm s-1) and very high kinetic energy
(usually between 1044 and 1047 erg).
In general, yellow hypergiants and post-AGB objects with low initial mass
show nebular masses and momenta that are, respectively, higher and lower
than these values.
We compare the momenta of the fast outflows with those that can be supplied
by radiation pressure, taking into account the expected short acceleration
times and some effects that can increase the momentum transfer.
We find that in about 80% of PPNe, the fast molecular flows have
too high momenta to be powered by radiation pressure.
In some cases the momentum of the outflow is ~1000 larger than
that carried by radiation pressure; such high factors are difficult to
explain even under exceptional conditions.
Wind interaction is the basic phenomenon in the PN shaping from the
former AGB envelopes; we conclude that this interaction systematically
takes place along a dominant direction and that this process is not powered
by radiation pressure.
Due to the lack of theoretical studies, the possible momentum source
remains a matter of speculation.
Key words: stars: AGB and post-AGB / stars: circumstellar matter / radio lines: stars / ISM: planetary nebulae: general
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.