Issue |
A&A
Volume 376, Number 2, September II 2001
|
|
---|---|---|
Page(s) | 697 - 707 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20010992 | |
Published online | 15 September 2001 |
Accretion powered spherical wind in general relativity
1
Astronomy Unit, Queen Mary & Westfield College, Mile End Rd, London E1 4NS, UK e-mail: T.Das@qmw.ac.uk
2
Inter University Centre For Astronomy And Astrophysics, Post Bag 4 Ganeshkhind, Pune 411 007, India e-mail: tapas@iucaa.ernet.in
Corresponding author: Tapas K. Das, tapas@iucaa.ernet.in
Received:
9
May
2001
Accepted:
20
June
2001
Using full general relativistic calculations, we investigate the possibility of generation of mass outflow from spherical accretion onto non-rotating black holes. Introducing a relativistic hadronic-pressure-supported steady, standing, spherically-symmetric shock surface around a Schwarzschild black hole as the effective physical barrier that may be responsible for the generation of spherical wind, we calculate the mass outflow rate R\dot m in terms of three accretion parameters and one outflow parameter by simultaneously solving the set of general relativistic hydrodynamic equations describing spherically symmetric, transonic, polytropic accretion and wind around a Schwarzschild black hole. Not only do we provide a sufficiently plausible estimation of R\dot m, we also successfully study the dependence and variation of this rate on various physical parameters governing the flow. Our calculation indicates that independent of initial boundary conditions, the baryonic matter content of this shock-generated wind always correlates with post-shock flow temperature.
Key words: accretion, accretion discs / black hole physics / relativity / hydrodynamics
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.