Issue |
A&A
Volume 375, Number 2, August IV 2001
|
|
---|---|---|
Page(s) | 680 - 690 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20010866 | |
Published online | 15 August 2001 |
The r-modes of rotating fluids
1
Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan 45195, Iran
2
Center for Theoretical Physics and Mathematics, AEOI, PO Box 11345-8486, Tehran, Iran
3
Department of Physics, University of Alberta, Edmonton AB, T6G 2J1 Canada () e-mail: sobouti@iasbs.ac.ir
Corresponding author: V. Rezania, vrezania@phys.ualberta.ca
Received:
1
February
2001
Accepted:
19
June
2001
An analysis of the toroidal modes of a rotating fluid, by means of
the differential equations of motion, is not readily
tractable. A matrix representation of the equations on a
suitable basis, however, simplifies the problem considerably and
reveals many of its intricacies. Let Ω be the
angular velocity of the star and () be the two
integers that specify a spherical harmonic function. One readily
finds the followings:
1) Because of the axial symmetry of equations of motion, all
modes, including the toroidal ones, are designated by a definite
azimuthal number m.
2) The analysis of equations of motion in the lowest order of
Ω shows that Coriolis
forces turn the neutral toroidal
motions of (
) designation of the non-rotating fluid into
a sequence of oscillatory modes with
frequencies
.
This much is common knowledge. One can say more, however.
a) Under the Coriolis forces,
the eigendisplacement vectors remain purely toroidal and carry the
identification (
). They remain decoupled from other toroidal
or poloidal motions belonging to different
's.
b) The eigenfrequencies quoted above are still degenerate, as they carry no
reference to a radial wave number.
As a result the eigendisplacement vectors, as far as their radial dependencies
go, remain indeterminate.
3) The analysis of the equation of motion in the next higher order
of Ω reveals that the forces
arising from asphericity of the fluid and the square of the
Coriolis terms (in some sense) remove the radial degeneracy. The
eigenfrequencies now carry three identifications (
),
say, of which s is a radial eigennumber. The eigendisplacement
vectors become well determined. They still remain zero order and purely
toroidal motions with a single (
) designation.
4) Two toroidal modes belonging to
and
get coupled only at the
order.
5) A toroidal and a poloidal mode belonging to
and
, respectively, get coupled but again at the
order.
Mass and mass-current multipole moments of the modes that are
responsible for the gravitational radiation, and bulk and shear
viscosities that tend to damp the modes, are worked out in much
detail.
Key words: stars: neutron / stars: oscillations / stars: rotation
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.