Issue |
A&A
Volume 374, Number 3, August II 2001
|
|
---|---|---|
Page(s) | 997 - 1002 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20010774 | |
Published online | 15 August 2001 |
The role of synchrotron self-absorption in the late radio emission from SN 1993J
1
Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain e-mail: J.M.Marcaide@uv.es
2
Instituto de Astrofísica de Andalucía, CSIC, Apdo. Correos 3004, 18080 Granada, Spain e-mail: alberdi@laeff.esa.es
Corresponding author: M. A. Pérez-Torres, torres@ira.bo.cnr.it
Received:
14
November
2000
Accepted:
23
May
2001
The standard model for radio supernovae considers that the observed synchrotron radio emission arises from the high-energy shell that results from the strong interaction between the expanding supernova ejecta and the circumstellar medium. This emission is considered to be only partially absorbed by ionized thermal electrons in the circumstellar wind of the progenitor star. Based on a study of the radio light curves of the type II supernova SN1993J, we present evidence of synchrotron self-absorption. Our modeling of the radio light curves requires a large initial magnetic field, of about 30 Gauss, and the existence of an (initially) highly-relativistic population of electrons. We also show that while at early epochs the dominant absorption mechanism is external absorption by thermal electrons, at late epochs and long wavelengths the dominant absorption mechanism is synchrotron self-absorption. Consequently, the spectral turnover takes place at much shorter wavelengths than expected in the standard model, and at long wavelengths (≥90 cm at current epochs) the flux predictions depart substantially from those of the standard model.
Key words: radiation mechanisms: non-thermal radiative transfer / supernovae: general / supernovae: individual (SN 1993J)
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.