Issue |
A&A
Volume 373, Number 2, July II 2001
|
|
---|---|---|
Page(s) | 683 - 701 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20010517 | |
Published online | 15 July 2001 |
Short-term collisional evolution of a disc perturbed by a giant-planet embryo
1
Université Paris 7 Denis Diderot, Service d'Astrophysique & CEA Saclay, France
2
DESPA, Observatoire de Paris, 92195 Meudon Cedex Principal, France
Corresponding author: S. Charnoz, charnoz@discovery.saclay.cea.fr
Received:
26
December
2000
Accepted:
9
April
2001
A simple numerical model has been developed to study the evolution of a disc of
planetesimals under mutual inelastic collisions in the potential field of a central body
and of an embedded giant-planet embryo. Masses for the latter range from 0.5 to 300 Earth masses.
A mass of is typical of the solid-core model for the formation of giant planets. The
initially cold disc consists of a few thousand particles. Those initially present between one and
three Hill radii from the perturber's orbit are transferred to very eccentric orbits causing violent
collisions throughout the disc. The perturbation propagates far from the perturber, like a heat
transfer: a
perturber orbiting at 5.2 a.u. heats up the disc from 2.3 to at least 11 a.u.
from the central body in a few 105 to 106 years. Relative velocities are typically
increased by a factor of 10 to 100. The extent of the heated region increases with the protoplanet's mass while the propagation timescale decreases. The resulting radial mixing has potential applications
for the origin of the Asteroid Belt, in particular for the radial distribution of
the asteroid's spectroscopic families.
Key words: Solar System: formation / planets ans satellites: general / minor planets, asteroid
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.