Issue |
A&A
Volume 373, Number 2, July II 2001
|
|
---|---|---|
Page(s) | 665 - 673 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20010674 | |
Published online | 15 July 2001 |
On steady shell formation in stellar atmospheres
II. Energy balance in a non-polytropic stellar envelope
1
Section of Astrophysics, Astronomy & Mechanics, Physics Department, University of Athens Panepistimiopolis, 157 83 Zografos, Athens, Greece
2
Hellenic Air Force Academy, Dekelia, Attiki, Greece
Received:
25
October
2000
Accepted:
12
April
2001
The energy balance of the analytical solutions of Kakouris & Moussas ([CITE]) for a steady state of an externally heated/cooled 2-D circumstellar envelope is investigated. It is found that the required heating/cooling rates are physically realistic and can be related to specific microscopic mechanisms. We find that in the subsonic region of the wind the fluid is mechanically heated. In the supersonic stellar envelope the fluid is cooled at a rate which is consistent with radiative cooling to space. The energy balance of steady shell or blob formation in the envelopes of luminous early or late type supergiants is also investigated (Kakouris & Moussas [CITE]). We find that radiative cooling occurs in the intermediate deceleration region of the three-zone envelope. Indicative of the local thermodynamic processes is the effective polytropic index
α which takes values close to the star between 1 and 4, becoming 2 at larger distances. The heated subsonic region close to the stellar surface is isothermal and becomes adiabatic at the sonic transition. We find that the polytropic index α is less than unity in the vicinity of the dense blob, indicating that the region may be dominated by convection.
Key words: hydrodynamics / methods: analytical / stars: atmospheres / supergiants / stars: mass-loss
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.