Issue |
A&A
Volume 370, Number 3, May II 2001
|
|
---|---|---|
Page(s) | 909 - 922 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20010291 | |
Published online | 15 May 2001 |
The afterglow of the short/intermediate-duration gamma-ray burst
GRB 000301C:
A jet at
*,**,***
1
Astronomical Observatory, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark e-mail: brian_j@astro.ku.dk, jens@astro.ku.dk, holger@astro.ku.dk
2
Institute of Physics and Astronomy, University of Aarhus, 8000 Århus C., Denmark e-mail: jfynbo@eso.org, sholland@nd.edu, bt@ifa.au.dk
3
European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany e-mail: pmoller@eso.org
4
Danish Space Research Institute, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark, e-mail: jgu@dsri.dk
5
Department of Physics, University of Notre Dame, Notre Dame IN 46556-5670, USA
6
Science Institute, Dunhagi 3, University of Iceland, 107 Reykjavik, Iceland, e-mail: gulli@raunvis.hi.is
7
Institut d'Astrophysique et de Géophysique, Université de Liège, avenue de Cointe 5, 4000 Liège, Belgium e-mail: burud@astro.ulg.ac.be
8
U.S. Naval Observatory, Flagstaff Station, Flagstaff, AZ 86002-1149, USA, e-mail: aah@nofs.navy.mil
9
Department of Physical Sciences, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, UK e-mail: nrt@star.herts.ac.uk
10
Joint Astronomy Centre, 660 N. A'ohoku Place, Hilo, Hawaii 96720, USA e-mail: c.davis@jach.hawaii.edu
11
University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: pmv@astro.uva.nl, evert@astro.uva.nl
12
University of California, Berkeley, Space Sciences Laboratory, Berkeley, CA 94720-7450 USA e-mail: khurley@ssl.berkeley.edu
13
NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 USA e-mail: cline@lheavx.gsfc.nasa.gov
14
NASA Goddard Space Flight Center, Code 691, Greenbelt, MD 20771 USA e-mail: Jacob.I.Trombka.1@gsfc.nasa.gov, xrtpm@leptpm.gsfc.nasa.gov
15
The Catholic University of America, Department of Physics, Washington, DC 20064 USA e-mail: rstarr@lepvax.gsfc.nasa.gov
16
The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 USA e-mail: john.goldsten@jhuapl.edu
17
Laboratorio de Astrofísica Espacial y Física Fundamental (LAEFF-INTA), PO Box 50727, 28080, Madrid, Spain, e-mail: ajct@iaa.es
18
Instituto de Astrofísica de Andalucía (IAA-CSIC), PO Box 03004, 18080 Granada, Spain
19
Astrophysikalisches Institut, Potsdam, Germany, e-mail: jgreiner@aip.de
20
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: calj@mpia-hd.mpg.de, Kuemmel@mpia-hd.mpg.de, mundt@mpia-hd.mpg.de
Corresponding author: B. L. Jensen, brian_j@astro.ku.dk
Received:
6
June
2000
Accepted:
19
February
2001
We present Ulysses and NEAR data from the detection of the
short or intermediate duration (2 s) gamma-ray burst
GRB 000301C (2000 March 1.41 UT). The gamma-ray burst (GRB)
was localised by the Inter Planetary Network (IPN) and RXTE to an area
of ~50 arcmin2. A fading optical counterpart was subsequently
discovered with the Nordic Optical Telescope (NOT) about 42 h after
the burst. The GRB lies at the border between the long-soft and the
short-hard classes of GRBs. If GRB 000301C belongs to the
latter class, this would be the first detection of an afterglow to a
short-hard burst. We present UBRI photometry from the time of the
discovery until 11 days after the burst. We also present JHK
photometry obtained with UKIRT on 2000 March 4.5 UT (3.1 days after
the burst). Finally, we present spectroscopic observations of the
optical afterglow obtained with the ESO VLT Antu telescope 4 and 5
days after the burst. The optical light curve is consistent with being
achromatic from 2 to 11 days after the burst and exhibits a break. A
broken power-law fit yields a shallow pre-break decay power-law slope
of , a break time of
days after the burst, and a post-break slope of
. These properties of the light curve are best
explained by a sideways expanding jet in an ambient medium of constant
mean density. In the optical spectrum we find absorption features that are
consistent with Feii, Civ, Cii, Siii
and Lyα at a redshift of
. We find evidence
for a curved shape of the spectral energy distribution of the observed
afterglow. It is best fitted with a power-law spectral distribution
with index
reddened by an SMC-like
extinction law
with
mag. Based on the Lyα absorption line
we estimate the Hi column density to be
(N(Hi)
. This is the first direct
indication of a connection between GRB host galaxies and Damped
Lyα Absorbers.
Key words: gamma rays: bursts / cosmology: observations / galaxies: distances and redshifts / ISM: dust, extinction / quasars: absorption lines
Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.