Issue |
A&A
Volume 366, Number 3, February II 2001
|
|
---|---|---|
Page(s) | 913 - 922 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20000282 | |
Published online | 15 February 2001 |
The galactic mass injection from cool stellar winds of the 1 to 2.5
stars in the solar neighbourhood
1
University of Sussex, Astronomy Centre, Falmer, Brighton BN1 9QJ, UK
2
Technische Universität Berlin, Inst. f. Astronomie u. Astrophysik, Sekr. PN 8-1, Hardenbergstr. 36, 10623 Berlin, Germany
Corresponding author: K.-P. Schröder, kps@star.cpes.susx.ac.uk
Received:
20
December
1999
Accepted:
16
November
2000
We have computed synthetic stellar samples and HR diagrams on the basis
of a fine-meshed, consistent grid of evolution tracks for given IMF
and SFR(t). In order to model the galactic disk stellar component (single
stars only) and to derive its IMF and apparent SFR(t), we
selected the synthetic sample which is the best fit to the observed
distribution of single stars in the solar neighbourhood HR diagram
(complete for pc,
, based on Hipparcos data).
Most giants of this synthetic sample fall in the range of Mi = 1 to
2.5
.
Stellar evolution on the tip-AGB has been computed by adopting, time-step
by time-step, the mass-loss rates predicted by very detailed dust-driven,
pulsating wind models for carbon-rich stars. This mass-loss description
causes the natural development of superwinds. Their
properties are in agreement with the range of measured masses
and expansion velocities of PNe, i.e. a total mass of between
0.25
and 0.65
has been ejected over the
final 30 thousand years. For the preceeding mass-loss
on the AGB and RGB, we use a semi-empirical approach, i.e., a
re-calibrated Reimers mass-loss which yields an RGB mass-loss (for
) consistent with the formation of horizontal
branch stars. Combining these approaches, we obtain a consistent
grid of mass-loss histories in the mass range of
to
.
By increasing the number of stars in our synthetic solar neighbourhood
stellar sample by a factor of thousand, we have been able to compute a
detailed, present-day, synthetic reference sample of galactic disk RGB
and AGB giant stars, together with their mass-loss. The results are in
good agreement with observations of cool giant stellar mass-loss,
as well as with the estimated space density of carbon stars.
Finally, we discuss the relative collective yields of the RGB, AGB
and tip-AGB stellar mass-loss as contributions to the galactic disk mass
re-injection.
Key words: stars: evolution / stars: late-type / stars: luminosity function, mass function / stars: mass loss / Galaxy: solar neighbourhood / Galaxy: stellar structure
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.