Issue |
A&A
Volume 478, Number 2, February I 2008
|
|
---|---|---|
Page(s) | 553 - 558 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20078274 | |
Published online | 20 November 2007 |
Energy flux of Alfvén waves in weakly ionized plasma
1
Centrum voor Plasma-Astrofysica, Celestijnenlaan 200 B, 3001 Leuven, Belgium e-mail: [Jovo.Vranjes;Stefaan.Poedts]@wis.kuleuven.be
2
Faculté des Sciences Appliquées, avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
3
Department of Physics, Macquarie University, Sydney, NSW 2109, Australia e-mail: bpandey@physics.mq.edu.au
4
Lockheed Martin Solar and Astrophysics Lab, 3251 Hanover St., Org. ADBS, Bldg. 252, Palo Alto, CA 94304 94304, USA e-mail: bdp@lmsal.com
Received:
13
July
2007
Accepted:
31
October
2007
Context.The overshooting convective motions in the solar photosphere, resulting in the foot point motion of different magnetic structures in the solar atmosphere, are frequently proposed as the source for the excitation of Alfvén waves, which are assumed to propagate towards the chromosphere and corona resulting finally in the heating of these layers by the dissipation of this wave energy. However, the photosphere is a) very weakly ionized, and, b) the dynamics of the plasma particles in this region is heavily influenced by the plasma-neutral collisions.
Aims.The purpose of this work is to check the consequences of these two facts on the above scenario and their effects on the electromagnetic waves.
Methods.Standard plasma theory is used and the wave physics of the weakly ionized photosphere is discussed. The magnetization and the collision frequencies of the plasma constituents are quantitatively examined.
Results.It is shown that the ions and electrons in the photosphere are both un-magnetized; their collision frequency with neutrals is much larger than the gyro-frequency. This implies that eventual Alfvén-type electromagnetic perturbations must involve the neutrals as well. This has the following consequences: i) in the presence of perturbations, the whole fluid (plasma + neutrals) moves; ii) the Alfvén velocity includes the total (plasma + neutrals) density and is thus considerably smaller compared to the collision-less case; iii) the perturbed velocity of a unit volume, which now includes both plasma and neutrals, becomes much smaller compared to the ideal (collision-less) case; and iv) the corresponding wave energy flux for the given parameters becomes much smaller compared to the ideal case.
Conclusions.The wave energy flux through the photosphere becomes orders of magnitude smaller, compared to the ideal case, when the effects of partial ionization and collisions are consistently taken into account.
Key words: Sun: photosphere / Sun: oscillations
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.