Issue |
A&A
Volume 463, Number 2, February IV 2007
|
|
---|---|---|
Page(s) | 761 - 774 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20066406 | |
Published online | 13 November 2006 |
A study of Jupiter's aurorae with XMM-Newton
1
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK e-mail: gbr@mssl.ucl.ac.uk
2
Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022, India
3
NASA Marshall Space Flight Center, NSSTC/XD12, 320 Sparkman Drive, Huntsville, AL 35805, USA
4
Southwest Research Institute, PO Drawer 28510, San Antonio, Texas 78228, USA
5
XMM-Newton SOC, Apartado 50727, Villafranca, 28080 Madrid, Spain
6
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
7
University of Michigan, Space Research Building, 2455 Hayward, Ann Arbor, Michigan 48109, USA
8
Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
Received:
15
September
2006
Accepted:
5
November
2006
We present a detailed analysis of Jupiter's X-ray (0.2-10 keV)
auroral emissions as observed over two XMM-Newton revolutions in Nov.
2003 and compare it with that of an earlier observation in Apr. 2003. We
discover the existence of an electron bremsstrahlung component in the aurorae,
which accounts for essentially all the X-ray flux above 2 keV: its presence
had been predicted but never detected for lack of sensitivity
of previous X-ray missions. This bremsstrahlung component varied significantly
in strength and spectral shape over the 3.5 days covered by the Nov. 2003
observation, displaying substantial hardening of the spectrum with increasing
flux. This variability may be linked to the strong solar activity
taking place at the time, and may be induced by changes in the acceleration
mechanisms inside Jupiter's magnetosphere. As in Apr. 2003, the auroral
spectra below 2 keV are best fitted by a superposition of line emission
most likely originating from ion charge exchange, with OVII playing the
dominant role. We still cannot resolve conclusively the ion species
responsible for the lowest energy lines (around 0.3 keV), so the
question of the origin of the ions (magnetospheric or solar wind) is
still open. It is conceivable that both scenarios play a role
in what is certainly a very complex planetary structure. High resolution spectra of the whole planet obtained with the XMM-Newton
Reflection Grating Spectrometer in the range 0.5-1 keV clearly separate
emission lines (mostly of iron) originating at low latitudes on Jupiter from
the auroral lines due to oxygen. These are shown to possess very broad wings
which imply velocities of ~5000 km s. Such speeds are
consistent with the energies at which precipitating and charge exchanging
oxygen ions are expected to be accelerated in Jupiter's magnetosphere.
Overall we find good agreement between our measurements and the predictions
of recently developed models of Jupiter's auroral processes.
Key words: planets and satellites: general / planets and satellites: individual: Jupiter / X-rays: general
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.