The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
T. Regimbau , J. A. de Freitas Pacheco
A&A, 376 2 (2001) 381-385
Published online: 2001-09-15
This article has been cited by the following article(s):
58 articles
Astrometric deflections from gravitational wave memory accumulation over cosmological scales
Töre Boybeyi, Vuk Mandic and Alexandros Papageorgiou Physical Review D 110 (4) (2024) https://doi.org/10.1103/PhysRevD.110.043047
Contribution of AI and deep learning in revolutionizing gravitational wave detection
Krishna Prajapati, Snehal Jani, Manisha Singh and Ranjeet Brajpuriya Astronomy and Computing 48 100856 (2024) https://doi.org/10.1016/j.ascom.2024.100856
Estimating astrophysical population properties using a multicomponent stochastic gravitational-wave background search
Federico De Lillo and Jishnu Suresh Physical Review D 109 (10) (2024) https://doi.org/10.1103/PhysRevD.109.103013
Stochastic Gravitational Wave Background from Cosmological Neutrino-dominated Accretion Flows
Yun-Feng Wei and Tong Liu The Astrophysical Journal 972 (2) 167 (2024) https://doi.org/10.3847/1538-4357/ad6b0b
Upper limits on the polarized isotropic stochastic gravitational-wave background from advanced LIGO-Virgo's first three observing runs
Yang Jiang and Qing-Guo Huang Journal of Cosmology and Astroparticle Physics 2023 (02) 026 (2023) https://doi.org/10.1088/1475-7516/2023/02/026
Stochastic gravitational wave background: Methods and implications
Nick van Remortel, Kamiel Janssens and Kevin Turbang Progress in Particle and Nuclear Physics 128 104003 (2023) https://doi.org/10.1016/j.ppnp.2022.104003
Detecting non-Gaussian gravitational wave backgrounds: A unified framework
Riccardo Buscicchio, Anirban Ain, Matteo Ballelli, Giancarlo Cella and Barbara Patricelli Physical Review D 107 (6) (2023) https://doi.org/10.1103/PhysRevD.107.063027
Tracking the origin of black holes with the stochastic gravitational wave background popcorn signal
Matteo Braglia, Juan García-Bellido and Sachiko Kuroyanagi Monthly Notices of the Royal Astronomical Society 519 (4) 6008 (2023) https://doi.org/10.1093/mnras/stad082
The Quest for the Astrophysical Gravitational-Wave Background with Terrestrial Detectors
Tania Regimbau Symmetry 14 (2) 270 (2022) https://doi.org/10.3390/sym14020270
The Stochastic Gravitational Wave Background from Magnetars
Sourav Roy Chowdhury and Maxim Khlopov Universe 7 (10) 381 (2021) https://doi.org/10.3390/universe7100381
Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run
R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, T. Akutsu, K. M. Aleman, G. Allen, A. Allocca, P. A. Altin, A. Amato, S. Anand, A. Ananyeva, et al . Physical Review D 104 (2) (2021) https://doi.org/10.1103/PhysRevD.104.022004
Subtracting compact binary foreground sources to reveal primordial gravitational-wave backgrounds
Surabhi Sachdev, Tania Regimbau and B. S. Sathyaprakash Physical Review D 102 (2) (2020) https://doi.org/10.1103/PhysRevD.102.024051
Astrophysical stochastic gravitational wave background
José Antonio de Freitas Pacheco Astronomische Nachrichten 340 (9-10) 945 (2019) https://doi.org/10.1002/asna.201913738
Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run
B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, G. Allen, A. Allocca, M. A. Aloy, P. A. Altin, A. Amato, A. Ananyeva, S. B. Anderson, W. G. Anderson, S. V. Angelova, et al . Physical Review D 100 (6) (2019) https://doi.org/10.1103/PhysRevD.100.061101
Probing the Fermi-LAT GeV Excess with Gravitational Waves
Francesca Calore, Tania Regimbau and Pasquale Dario Serpico Physical Review Letters 122 (8) (2019) https://doi.org/10.1103/PhysRevLett.122.081103
Identifying extra high frequency gravitational waves generated from oscillons with cuspy potentials using deep neural networks
Li-Li Wang, Jin Li, Nan Yang and Xin Li New Journal of Physics 21 (4) 043005 (2019) https://doi.org/10.1088/1367-2630/ab1310
Test the mergers of the primordial black holes by high frequency gravitational-wave detector
Xin Li, Li-Li Wang and Jin Li The European Physical Journal C 77 (9) (2017) https://doi.org/10.1140/epjc/s10052-017-5216-8
Systematic study of the stochastic gravitational-wave background due to stellar core collapse
K. Crocker, T. Prestegard, V. Mandic, et al. Physical Review D 95 (6) (2017) https://doi.org/10.1103/PhysRevD.95.063015
Second Einstein Telescope mock data and science challenge: Low frequency binary neutron star data analysis
Duncan Meacher, Kipp Cannon, Chad Hanna, Tania Regimbau and B. S. Sathyaprakash Physical Review D 93 (2) (2016) https://doi.org/10.1103/PhysRevD.93.024018
Efficiency of the cross-correlation statistic for gravitational wave stochastic background signals with non-Gaussian noise and heterogeneous detector sensitivities
Lionel Martellini and Tania Regimbau Physical Review D 92 (10) (2015) https://doi.org/10.1103/PhysRevD.92.104025
New Technologies in Gravitational-Wave Detection
Stefan Ballmer and Vuk Mandic Annual Review of Nuclear and Particle Science 65 (1) 555 (2015) https://doi.org/10.1146/annurev-nucl-102014-022017
Mock data and science challenge for detecting an astrophysical stochastic gravitational-wave background with Advanced LIGO and Advanced Virgo
Duncan Meacher, Michael Coughlin, Sean Morris, et al. Physical Review D 92 (6) (2015) https://doi.org/10.1103/PhysRevD.92.063002
Model of the stochastic gravitational-wave background due to core collapse to black holes
K. Crocker, V. Mandic, T. Regimbau, et al. Physical Review D 92 (6) (2015) https://doi.org/10.1103/PhysRevD.92.063005
Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors
J. Aasi, J. Abadie, B. P. Abbott, et al. Physical Review D 91 (2) (2015) https://doi.org/10.1103/PhysRevD.91.022003
Statistical properties of astrophysical gravitational-wave backgrounds
Duncan Meacher, Eric Thrane and Tania Regimbau Physical Review D 89 (8) (2014) https://doi.org/10.1103/PhysRevD.89.084063
STOCHASTIC MICROHERTZ GRAVITATIONAL RADIATION FROM STELLAR CONVECTION
M. F. Bennett and A. Melatos The Astrophysical Journal 792 (1) 55 (2014) https://doi.org/10.1088/0004-637X/792/1/55
Correlated noise in networks of gravitational-wave detectors: Subtraction and mitigation
E. Thrane, N. Christensen, R. M. S. Schofield and A. Effler Physical Review D 90 (2) (2014) https://doi.org/10.1103/PhysRevD.90.023013
Semiparametric approach to the detection of non-Gaussian gravitational wave stochastic backgrounds
Lionel Martellini and Tania Regimbau Physical Review D 89 (12) (2014) https://doi.org/10.1103/PhysRevD.89.124009
Second Einstein Telescope mock science challenge: Detection of the gravitational-wave stochastic background from compact binary coalescences
Tania Regimbau, Duncan Meacher and Michael Coughlin Physical Review D 89 (8) (2014) https://doi.org/10.1103/PhysRevD.89.084046
Measuring neutron-star ellipticity with measurements of the stochastic gravitational-wave background
Dipongkar Talukder, Eric Thrane, Sukanta Bose and Tania Regimbau Physical Review D 89 (12) (2014) https://doi.org/10.1103/PhysRevD.89.123008
Estimates of maximum energy density of cosmological gravitational-wave backgrounds
John T. Giblin and Eric Thrane Physical Review D 90 (10) (2014) https://doi.org/10.1103/PhysRevD.90.107502
Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications
E. Thrane, N. Christensen and R. M. S. Schofield Physical Review D 87 (12) (2013) https://doi.org/10.1103/PhysRevD.87.123009
Measurement of parity violation in the early universe using gravitational-wave detectors
S.G. Crowder, R. Namba, V. Mandic, S. Mukohyama and M. Peloso Physics Letters B 726 (1-3) 66 (2013) https://doi.org/10.1016/j.physletb.2013.08.077
Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors
Cheng-Jian Wu, Vuk Mandic and Tania Regimbau Physical Review D 87 (4) (2013) https://doi.org/10.1103/PhysRevD.87.042002
Measuring the non-Gaussian stochastic gravitational-wave background: A method for realistic interferometer data
Eric Thrane Physical Review D 87 (4) (2013) https://doi.org/10.1103/PhysRevD.87.043009
Anisotropies in the gravitational-wave stochastic background
S Ölmez, V Mandic and X Siemens Journal of Cosmology and Astroparticle Physics 2012 (07) 009 (2012) https://doi.org/10.1088/1475-7516/2012/07/009
Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000 Hz
J. Abadie, B. P. Abbott, R. Abbott, et al. Physical Review D 85 (12) (2012) https://doi.org/10.1103/PhysRevD.85.122001
Gravitational wave background from rotating neutron stars
Pablo A. Rosado Physical Review D 86 (10) (2012) https://doi.org/10.1103/PhysRevD.86.104007
Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background
V. Mandic, E. Thrane, S. Giampanis and T. Regimbau Physical Review Letters 109 (17) (2012) https://doi.org/10.1103/PhysRevLett.109.171102
Stochastic backgrounds of gravitational waves from cosmological sources - the role of dark energy
Oswaldo D. Miranda Monthly Notices of the Royal Astronomical Society 426 (4) 2758 (2012) https://doi.org/10.1111/j.1365-2966.2012.21887.x
Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data
J. Abadie, B. P. Abbott, R. Abbott, et al. Physical Review Letters 107 (27) (2011) https://doi.org/10.1103/PhysRevLett.107.271102
Gravitational wave background from binary systems
Pablo A. Rosado Physical Review D 84 (8) (2011) https://doi.org/10.1103/PhysRevD.84.084004
Ultrahigh energy cosmic ray acceleration in newly born magnetars and their associated gravitational wave signatures
Kumiko Kotera Physical Review D 84 (2) (2011) https://doi.org/10.1103/PhysRevD.84.023002
The astrophysical gravitational wave stochastic background
Tania Regimbau Research in Astronomy and Astrophysics 11 (4) 369 (2011) https://doi.org/10.1088/1674-4527/11/4/001
Current status of gravitational wave observations
Stephen Fairhurst, Gianluca M. Guidi, Patrice Hello, John T. Whelan and Graham Woan General Relativity and Gravitation 43 (2) 387 (2011) https://doi.org/10.1007/s10714-010-1009-1
An upper limit on the stochastic gravitational-wave background of cosmological origin
Nature 460 (7258) 990 (2009) https://doi.org/10.1038/nature08278
Astrophysical sources of a stochastic gravitational-wave background
T Regimbau and V Mandic Classical and Quantum Gravity 25 (18) 184018 (2008) https://doi.org/10.1088/0264-9381/25/18/184018
Populating the Galaxy with pulsars I. Stellar and binary evolution
Paul D. Kiel, Jarrod R. Hurley, Matthew Bailes and James R. Murray Monthly Notices of the Royal Astronomical Society 388 (1) 393 (2008) https://doi.org/10.1111/j.1365-2966.2008.13402.x
Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory
B. Abbott, R. Abbott, R. Adhikari, et al. The Astrophysical Journal 659 (2) 918 (2007) https://doi.org/10.1086/511329
Upper limit map of a background of gravitational waves
B. Abbott, R. Abbott, R. Adhikari, et al. Physical Review D 76 (8) (2007) https://doi.org/10.1103/PhysRevD.76.082003
First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds
B. Abbott, R. Abbott, R. Adhikari, et al. Physical Review D 76 (2) (2007) https://doi.org/10.1103/PhysRevD.76.022001
QUARK CORE FORMATION IN SPINNING-DOWN PULSARS
G. F. MARRANGHELLO, T. REGIMBAU and J. A. DE FREITAS PACHECO International Journal of Modern Physics D 16 (02n03) 313 (2007) https://doi.org/10.1142/S0218271807010067
Stochastic Background from Coalescences of Neutron Star–Neutron Star Binaries
T. Regimbau and J. A. de Freitas Pacheco The Astrophysical Journal 642 (1) 455 (2006) https://doi.org/10.1086/500190
Detection regimes of the cosmological gravitational wave background from astrophysical sources
David Coward and Tania Regimbau New Astronomy Reviews 50 (6) 461 (2006) https://doi.org/10.1016/j.newar.2006.07.001
The star formation rate density and the stochastic background of gravitational waves
José C N de Araujo and Oswaldo D Miranda Journal of Physics: Conference Series 32 323 (2006) https://doi.org/10.1088/1742-6596/32/1/049
Gravitational wave background from magnetars
T. Regimbau and J. A. de Freitas Pacheco Astronomy & Astrophysics 447 (1) 1 (2006) https://doi.org/10.1051/0004-6361:20053702
A radiometer for stochastic gravitational waves
Stefan W Ballmer Classical and Quantum Gravity 23 (8) S179 (2006) https://doi.org/10.1088/0264-9381/23/8/S23
Star formation rate density and the stochastic background of gravitational waves
José C. N. de Araujo and Oswaldo D. Miranda Physical Review D 71 (12) (2005) https://doi.org/10.1103/PhysRevD.71.127503