Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Classification of Exoplanetary Light Curves Using Artificial Intelligence

Leticia Flores-Pulido, Liliana Ibeth Barbosa-Santillán, Ma. Teresa Orozco-Aguilera and Bertha Patricia Guzman-Velázquez
AI 6 (5) 102 (2025)
https://doi.org/10.3390/ai6050102

SMBH binary candidate PKS J2134−0153: possible multi-band periodic variability and inter-band time lags

Guo-Wei Ren, Mouyuan Sun, Nan Ding, Xing Yang and Zhi-Xiang Zhang
Monthly Notices of the Royal Astronomical Society 537 (3) 2931 (2025)
https://doi.org/10.1093/mnras/stae2553

Finding radio transients with anomaly detection and active learning based on volunteer classifications

Alex Andersson, Chris Lintott, Rob Fender, Michelle Lochner, Patrick Woudt, Jakob van den Eijnden, Alexander van der Horst, Assaf Horesh, Payaswini Saikia, Gregory R Sivakoff, Lilia Tremou and Mattia Vaccari
Monthly Notices of the Royal Astronomical Society 538 (3) 1397 (2025)
https://doi.org/10.1093/mnras/staf336

Astronomaly at scale: searching for anomalies amongst 4 million galaxies

V Etsebeth, M Lochner, M Walmsley and M Grespan
Monthly Notices of the Royal Astronomical Society 529 (1) 732 (2024)
https://doi.org/10.1093/mnras/stae496

Classification of Variable Star Light Curves with Convolutional Neural Network

Almat Akhmetali, Timur Namazbayev, Gulnur Subebekova, Marat Zaidyn, Aigerim Akniyazova, Yeskendyr Ashimov and Nurzhan Ussipov
Galaxies 12 (6) 75 (2024)
https://doi.org/10.3390/galaxies12060075

An Automated Catalog of Long Period Variables using Infrared Lightcurves from Palomar Gattini-IR

Aswin Suresh, Viraj Karambelkar, Mansi M. Kasliwal, Michael C. B. Ashley, Kishalay De, Matthew J. Hankins, Anna M. Moore, Jamie Soon, Roberto Soria, Tony Travouillon and Kayton K. Truong
Publications of the Astronomical Society of the Pacific 136 (8) 084203 (2024)
https://doi.org/10.1088/1538-3873/ad68a4

Characterizing B stars from Kepler/K2 Campaign 11

Alan W. Pereira, Eduardo Janot-Pacheco, Marcelo Emilio, Laerte Andrade, James D. Armstrong, Jéssica M. Eidam, M. Cristina Rabello-Soares and Bergerson V. H. V. da Silva
Astronomy & Astrophysics 686 A20 (2024)
https://doi.org/10.1051/0004-6361/202346439

An innovative tool for automating classification of stellar variability through nonlinear data analytics

R. Syiemlieh, P.R. Saleh, D. Hazarika and E. Saikia
Astronomy and Computing 45 100763 (2023)
https://doi.org/10.1016/j.ascom.2023.100763

Extending time-series models for irregular observational gaps with a moving average structure for astronomical sequences

C Ojeda, W Palma, S Eyheramendy and F Elorrieta
RAS Techniques and Instruments 2 (1) 33 (2023)
https://doi.org/10.1093/rasti/rzac011

Informative regularization for a multi-layer perceptron RR Lyrae classifier under data shift

F. Pérez-Galarce, K. Pichara, P. Huijse, M. Catelan and D. Mery
Astronomy and Computing 43 100694 (2023)
https://doi.org/10.1016/j.ascom.2023.100694

Sparse Logistic Regression for RR Lyrae versus Binaries Classification

Piero Trevisan, Mario Pasquato, Gaia Carenini, Nicolas Mekhaël, Vittorio F. Braga, Giuseppe Bono and Mohamad Abbas
The Astrophysical Journal 950 (2) 103 (2023)
https://doi.org/10.3847/1538-4357/accf8f

Automated classification of eclipsing binary systems in the VVV Survey

I V Daza-Perilla, L V Gramajo, M Lares, et al.
Monthly Notices of the Royal Astronomical Society 520 (1) 828 (2023)
https://doi.org/10.1093/mnras/stad141

Finding Fast Transients in Real Time Using a Novel Light-curve Analysis Algorithm

Robert Strausbaugh, Antonino Cucchiara, Michael Dow Jr., Sara Webb, Jielai Zhang, Simon Goode and Jeff Cooke
The Astronomical Journal 163 (2) 95 (2022)
https://doi.org/10.3847/1538-3881/ac441b

YOUNG Star detrending for Transiting Exoplanet Recovery (YOUNGSTER) – II. Using self-organizing maps to explore young star variability in sectors 1–13 of TESS data

Matthew P Battley, David J Armstrong and Don Pollacco
Monthly Notices of the Royal Astronomical Society 511 (3) 4285 (2022)
https://doi.org/10.1093/mnras/stac278

Kepler Uzay Teleskobu ve ASAS Görüş Alanındaki Sefeid Türü Değişen Yıldızların Frekans Analizi

Mehmet Oğuzhan ERTURAN and Hasan AK
Turkish Journal of Astronomy and Astrophysics 3 (3) 19 (2022)
https://doi.org/10.55064/tjaa.1036716

Semi-supervised classification and clustering analysis for variable stars

R Pantoja, M Catelan, K Pichara and P Protopapas
Monthly Notices of the Royal Astronomical Society 517 (3) 3660 (2022)
https://doi.org/10.1093/mnras/stac2715

A novel bivariate autoregressive model for predicting and forecasting irregularly observed time series

Felipe Elorrieta, Susana Eyheramendy, Wilfredo Palma and Cesar Ojeda
Monthly Notices of the Royal Astronomical Society 505 (1) 1105 (2021)
https://doi.org/10.1093/mnras/stab1216

Alert Classification for the ALeRCE Broker System: The Light Curve Classifier

P. Sánchez-Sáez, I. Reyes, C. Valenzuela, F. Förster, S. Eyheramendy, F. Elorrieta, F. E. Bauer, G. Cabrera-Vives, P. A. Estévez, M. Catelan, G. Pignata, P. Huijse, D. De Cicco, P. Arévalo, R. Carrasco-Davis, J. Abril, R. Kurtev, J. Borissova, J. Arredondo, E. Castillo-Navarrete, D. Rodriguez, D. Ruz-Mieres, A. Moya, L. Sabatini-Gacitúa, C. Sepúlveda-Cobo and E. Camacho-Iñiguez
The Astronomical Journal 161 (3) 141 (2021)
https://doi.org/10.3847/1538-3881/abd5c1

Classification of Variable Stars Light Curves Using Long Short Term Memory Network

Saksham Bassi, Kaushal Sharma and Atharva Gomekar
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.718139

New insights into time-series analysis IV: panchromatic and flux-independent period finding methods

C E Ferreira Lopes, N J G Cross and F Jablonski
Monthly Notices of the Royal Astronomical Society 501 (3) 4123 (2021)
https://doi.org/10.1093/mnras/staa3967

A method for finding anomalous astronomical light curves and their analogues

J Rafael Martínez-Galarza, Federica B Bianco, Dennis Crake, et al.
Monthly Notices of the Royal Astronomical Society 508 (4) 5734 (2021)
https://doi.org/10.1093/mnras/stab2588

Variability, periodicity, and contact binaries in WISE

Evan Petrosky, Hsiang-Chih Hwang, Nadia L Zakamska, Vedant Chandra and Matthew J Hill
Monthly Notices of the Royal Astronomical Society 503 (3) 3975 (2021)
https://doi.org/10.1093/mnras/stab592

Informative Bayesian model selection for RR Lyrae star classifiers

F Pérez-Galarce, K Pichara, P Huijse, M Catelan and D Mery
Monthly Notices of the Royal Astronomical Society 503 (1) 484 (2021)
https://doi.org/10.1093/mnras/stab320

The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker

F. Förster, G. Cabrera-Vives, E. Castillo-Navarrete, P. A. Estévez, P. Sánchez-Sáez, J. Arredondo, F. E. Bauer, R. Carrasco-Davis, M. Catelan, F. Elorrieta, S. Eyheramendy, P. Huijse, G. Pignata, E. Reyes, I. Reyes, D. Rodríguez-Mancini, D. Ruz-Mieres, C. Valenzuela, I. Álvarez-Maldonado, N. Astorga, J. Borissova, A. Clocchiatti, D. De Cicco, C. Donoso-Oliva, L. Hernández-García, et al.
The Astronomical Journal 161 (5) 242 (2021)
https://doi.org/10.3847/1538-3881/abe9bc

TESS Data for Asteroseismology (T’DA) Stellar Variability Classification Pipeline: Setup and Application to the Kepler Q9 Data

J. Audenaert, J. S. Kuszlewicz, R. Handberg, A. Tkachenko, D. J. Armstrong, M. Hon, R. Kgoadi, M. N. Lund, K. J. Bell, L. Bugnet, D. M. Bowman, C. Johnston, R. A. García, D. Stello, L. Molnár, E. Plachy, D. Buzasi and C. Aerts
The Astronomical Journal 162 (5) 209 (2021)
https://doi.org/10.3847/1538-3881/ac166a

Identifying Periodic Variable Stars and Eclipsing Binary Systems with Long-term Las Cumbres Observatory Photometric Monitoring of ZTF J0139+5245

Aniket Sanghi, Zachary P. Vanderbosch and Michael H. Montgomery
The Astronomical Journal 162 (4) 133 (2021)
https://doi.org/10.3847/1538-3881/ac18be

Zwicky Transient Facility and Globular Clusters: the Period–Luminosity and Period–Luminosity–Color Relations for Late-type Contact Binaries

Chow-Choong Ngeow, Szu-Han Liao, Eric C. Bellm, Dmitry A. Duev, Matthew J. Graham, Ashish A. Mahabal, Frank J. Masci, Michael S. Medford, Reed Riddle and Ben Rusholme
The Astronomical Journal 162 (2) 63 (2021)
https://doi.org/10.3847/1538-3881/ac01ea

A Comprehensive Comparison of Period Extraction Algorithms for Asteroids with Long Term Observation

Yang Liu, Liming Wu, Tianqi Sun, Pengfei Zhang, Xi Fang, Liyun Cheng and Bin Jiang
Universe 7 (11) 429 (2021)
https://doi.org/10.3390/universe7110429

Unveiling short-period binaries in the inner VVV bulge

E Botan, R K Saito, D Minniti, et al.
Monthly Notices of the Royal Astronomical Society 504 (1) 654 (2021)
https://doi.org/10.1093/mnras/stab888

The ZTF Source Classification Project. I. Methods and Infrastructure

Jan van Roestel, Dmitry A. Duev, Ashish A. Mahabal, Michael W. Coughlin, Przemek Mróz, Kevin Burdge, Andrew Drake, Matthew J. Graham, Lynne Hillenbrand, Eric C. Bellm, Thomas Kupfer, Alexandre Delacroix, C. Fremling, V. Zach Golkhou, David Hale, Russ R. Laher, Frank J. Masci, Reed Riddle, Philippe Rosnet, Ben Rusholme, Roger Smith, Maayane T. Soumagnac, Richard Walters, Thomas A. Prince and S. R. Kulkarni
The Astronomical Journal 161 (6) 267 (2021)
https://doi.org/10.3847/1538-3881/abe853

A survey on machine learning based light curve analysis for variable astronomical sources

Ce Yu, Kun Li, Yanxia Zhang, Jian Xiao, Chenzhou Cui, Yihan Tao, Shanjiang Tang, Chao Sun and Chongke Bi
WIREs Data Mining and Knowledge Discovery 11 (5) (2021)
https://doi.org/10.1002/widm.1425

The VISTA Variables in the Vía Láctea infrared variability catalogue (VIVA-I)

Christopher M P Russell, J R De Medeiros, C Cortés, et al.
Monthly Notices of the Royal Astronomical Society 496 (2) 1730 (2020)
https://doi.org/10.1093/mnras/staa1352

Recovering variable stars in large surveys: EAup Algol-type class in the Catalina Survey

A Carmo, C E Ferreira Lopes, A Papageorgiou, et al.
Monthly Notices of the Royal Astronomical Society 498 (2) 2833 (2020)
https://doi.org/10.1093/mnras/staa2518

Near-infrared Search for Fundamental-mode RR Lyrae Stars toward the Inner Bulge by Deep Learning

István Dékány and Eva K. Grebel
The Astrophysical Journal 898 (1) 46 (2020)
https://doi.org/10.3847/1538-4357/ab9d87

Streaming classification of variable stars

L Zorich, K Pichara and P Protopapas
Monthly Notices of the Royal Astronomical Society 492 (2) 2897 (2020)
https://doi.org/10.1093/mnras/stz3426

Unsupervised machine learning for transient discovery in deeper, wider, faster light curves

Sara Webb, Michelle Lochner, Daniel Muthukrishna, et al.
Monthly Notices of the Royal Astronomical Society 498 (3) 3077 (2020)
https://doi.org/10.1093/mnras/staa2395

An Information Theory Approach on Deciding Spectroscopic Follow-ups

Javiera Astudillo, Pavlos Protopapas, Karim Pichara and Pablo Huijse
The Astronomical Journal 159 (1) 16 (2020)
https://doi.org/10.3847/1538-3881/ab557d

Scalable end-to-end recurrent neural network for variable star classification

F Nikzat, C Aguirre, P Protopapas, et al.
Monthly Notices of the Royal Astronomical Society 493 (2) 2981 (2020)
https://doi.org/10.1093/mnras/staa350

On Neural Architectures for Astronomical Time-series Classification with Application to Variable Stars

Sara Jamal and Joshua S. Bloom
The Astrophysical Journal Supplement Series 250 (2) 30 (2020)
https://doi.org/10.3847/1538-4365/aba8ff

Deep multi-survey classification of variable stars

C Aguirre, K Pichara and I Becker
Monthly Notices of the Royal Astronomical Society 482 (4) 5078 (2019)
https://doi.org/10.1093/mnras/sty2836

An Algorithm for the Visualization of Relevant Patterns in Astronomical Light Curves

Christian Pieringer, Karim Pichara, Márcio Catelán and Pavlos Protopapas
Monthly Notices of the Royal Astronomical Society 484 (3) 3071 (2019)
https://doi.org/10.1093/mnras/stz106

Into the Darkness: Classical and Type II Cepheids in the Zona Galactica Incognita

István Dékány, Gergely Hajdu, Eva K. Grebel and Márcio Catelan
The Astrophysical Journal 883 (1) 58 (2019)
https://doi.org/10.3847/1538-4357/ab3b60

Classifying Periodic Astrophysical Phenomena from non-survey optimized variable-cadence observational data

Paul R. McWhirter, Abir Hussain, Dhiya Al-Jumeily, Iain A. Steele and Marley M.B.R. Vellasco
Expert Systems with Applications 131 94 (2019)
https://doi.org/10.1016/j.eswa.2019.04.035

Discrete-time autoregressive model for unequally spaced time-series observations

Felipe Elorrieta, Susana Eyheramendy and Wilfredo Palma
Astronomy & Astrophysics 627 A120 (2019)
https://doi.org/10.1051/0004-6361/201935560

Unsupervised classification of variable stars

Lucas Valenzuela and Karim Pichara
Monthly Notices of the Royal Astronomical Society 474 (3) 3259 (2018)
https://doi.org/10.1093/mnras/stx2913

Uncertain Classification of Variable Stars: Handling Observational GAPS and Noise

Nicolás Castro, Pavlos Protopapas and Karim Pichara
The Astronomical Journal 155 (1) 16 (2018)
https://doi.org/10.3847/1538-3881/aa9ab8

Variability search in M 31 using principal component analysis and the Hubble Source Catalogue

M I Moretti, D Hatzidimitriou, A Karampelas, et al.
Monthly Notices of the Royal Astronomical Society 477 (2) 2664 (2018)
https://doi.org/10.1093/mnras/sty758

New variable stars from the photographic archive: semi-automated discoveries, attempts at automatic classification and the new field 104 Her

Sergei V. Antipin, Ignacio Becker, Alexander A. Belinski, et al.
Research in Astronomy and Astrophysics 18 (8) 092 (2018)
https://doi.org/10.1088/1674-4527/18/8/92

New Insights into Time Series Analysis III: Setting constraints on period analysis

C E Ferreira Lopes, N J G Cross and F Jablonski
Monthly Notices of the Royal Astronomical Society 481 (3) 3083 (2018)
https://doi.org/10.1093/mnras/sty2469

Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream

Gautham Narayan, Tayeb Zaidi, Monika D. Soraisam, Zhe Wang, Michelle Lochner, Thomas Matheson, Abhijit Saha, Shuo Yang, Zhenge Zhao, John Kececioglu, Carlos Scheidegger, Richard T. Snodgrass, Tim Axelrod, Tim Jenness, Robert S. Maier, Stephen T. Ridgway, Robert L. Seaman, Eric Michael Evans, Navdeep Singh, Clark Taylor, Jackson Toeniskoetter, Eric Welch and Songzhe Zhu
The Astrophysical Journal Supplement Series 236 (1) 9 (2018)
https://doi.org/10.3847/1538-4365/aab781

GRAPE: Genetic Routine for Astronomical Period Estimation

Paul R McWhirter, Iain A Steele, Abir Hussain, Dhiya Al-Jumeily and Marley M B R Vellasco
Monthly Notices of the Royal Astronomical Society 479 (4) 5196 (2018)
https://doi.org/10.1093/mnras/sty1823

An irregular discrete time series model to identify residuals with autocorrelation in astronomical light curves

Susana Eyheramendy, Felipe Elorrieta and Wilfredo Palma
Monthly Notices of the Royal Astronomical Society 481 (4) 4311 (2018)
https://doi.org/10.1093/mnras/sty2487

Comparative performance of selected variability detection techniques in photometric time series data

K. V. Sokolovsky, P. Gavras, A. Karampelas, et al.
Monthly Notices of the Royal Astronomical Society 464 (1) 274 (2017)
https://doi.org/10.1093/mnras/stw2262

Variable classification in the LSST era: exploring a model for quasi-periodic light curves

J. C. Zinn, C. S. Kochanek, S. Kozłowski, et al.
Monthly Notices of the Royal Astronomical Society 468 (2) 2189 (2017)
https://doi.org/10.1093/mnras/stx586

Machine learning techniques to select Be star candidates

M. F. Pérez-Ortiz, A. García-Varela, A. J. Quiroz, B. E. Sabogal and J. Hernández
Astronomy & Astrophysics 605 A123 (2017)
https://doi.org/10.1051/0004-6361/201628937

Supervised ensemble classification ofKeplervariable stars

G. Bass and K. Borne
Monthly Notices of the Royal Astronomical Society 459 (4) 3721 (2016)
https://doi.org/10.1093/mnras/stw810

An autoregressive model for irregular time series of variable stars

Susana Eyheramendy, Felipe Elorrieta and Wilfredo Palma
Proceedings of the International Astronomical Union 12 (S325) 259 (2016)
https://doi.org/10.1017/S1743921317000448

An analysis of feature relevance in the classification of astronomical transients with machine learning methods

A. D'Isanto, S. Cavuoti, M. Brescia, et al.
Monthly Notices of the Royal Astronomical Society 457 (3) 3119 (2016)
https://doi.org/10.1093/mnras/stw157

Skysurveys, Light Curves and Statistical Challenges

G. Jogesh Babu and Ashish Mahabal
International Statistical Review 84 (3) 506 (2016)
https://doi.org/10.1111/insr.12118

Intelligent Computing Theories and Application

Paul R. McWhirter, Sean Wright, Iain A. Steele, et al.
Lecture Notes in Computer Science, Intelligent Computing Theories and Application 9771 820 (2016)
https://doi.org/10.1007/978-3-319-42291-6_81

Recursive Bayesian estimation of regularized and irregular quasar light curves

A. Hanif and P. Protopapas
Monthly Notices of the Royal Astronomical Society 448 (1) 390 (2015)
https://doi.org/10.1093/mnras/stv004

A MACHINE-LEARNING METHOD TO INFER FUNDAMENTAL STELLAR PARAMETERS FROM PHOTOMETRIC LIGHT CURVES

A. A. Miller, J. S. Bloom, J. W. Richards, et al.
The Astrophysical Journal 798 (2) 122 (2015)
https://doi.org/10.1088/0004-637X/798/2/122

OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE

Łukasz Wyrzykowski, Alicja E. Rynkiewicz, Jan Skowron, et al.
The Astrophysical Journal Supplement Series 216 (1) 12 (2015)
https://doi.org/10.1088/0067-0049/216/1/12

Featureless classification of light curves

S. D. Kügler, N. Gianniotis and K. L. Polsterer
Monthly Notices of the Royal Astronomical Society 451 (4) 3385 (2015)
https://doi.org/10.1093/mnras/stv1181

AUTOMATED CLASSIFICATION OF PERIODIC VARIABLE STARS DETECTED BY THEWIDE-FIELD INFRARED SURVEY EXPLORER

Frank J. Masci, Douglas I. Hoffman, Carl J. Grillmair and Roc M. Cutri
The Astronomical Journal 148 (1) 21 (2014)
https://doi.org/10.1088/0004-6256/148/1/21

THE EB FACTORY PROJECT. I. A FAST, NEURAL-NET-BASED, GENERAL PURPOSE LIGHT CURVE CLASSIFIER OPTIMIZED FOR ECLIPSING BINARIES

Martin Paegert, Keivan G. Stassun and Dan M. Burger
The Astronomical Journal 148 (2) 31 (2014)
https://doi.org/10.1088/0004-6256/148/2/31

Computational Intelligence Challenges and Applications on Large-Scale Astronomical Time Series Databases

Pablo Huijse, Pablo A. Estevez, Pavlos Protopapas, Jose C. Principe and Pablo Zegers
IEEE Computational Intelligence Magazine 9 (3) 27 (2014)
https://doi.org/10.1109/MCI.2014.2326100

Comparative Analysis of a Transition Region Bright Point with a Blinker and Coronal Bright Point Using Multiple EIS Emission Lines

N. Brice Orange, Hakeem M. Oluseyi, David L. Chesny, et al.
Solar Physics 289 (5) 1557 (2014)
https://doi.org/10.1007/s11207-013-0423-4

Exhausting the information: novel Bayesian combination of photometric redshift PDFs

Matias Carrasco Kind and Robert J. Brunner
Monthly Notices of the Royal Astronomical Society 442 (4) 3380 (2014)
https://doi.org/10.1093/mnras/stu1098

A mid-infrared study of RR Lyrae stars with the Wide-field Infrared Survey Explorer all-sky data release

Tatyana Gavrilchenko, Christopher R. Klein, Joshua S. Bloom and Joseph W. Richards
Monthly Notices of the Royal Astronomical Society 441 (1) 715 (2014)
https://doi.org/10.1093/mnras/stu606

The VVV Templates Project Towards an automated classification of VVV light-curves

R. Angeloni, R. Contreras Ramos, M. Catelan, et al.
Astronomy & Astrophysics 567 A100 (2014)
https://doi.org/10.1051/0004-6361/201423904

Overview of semi-sinusoidal stellar variability with the CoRoT satellite

J. R. De Medeiros, C. E. Ferreira Lopes, I. C. Leão, et al.
Astronomy & Astrophysics 555 A63 (2013)
https://doi.org/10.1051/0004-6361/201219415

Weighted statistical parameters for irregularly sampled time series

Lorenzo Rimoldini
Monthly Notices of the Royal Astronomical Society 437 (1) 147 (2013)
https://doi.org/10.1093/mnras/stt1864

A machine learning approach to Cepheid variable star classification using data alignment and maximum likelihood

Ricardo Vilalta, Kinjal Dhar Gupta and Lucas Macri
Astronomy and Computing 2 46 (2013)
https://doi.org/10.1016/j.ascom.2013.07.002