Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Fast emulation of cosmological density fields based on dimensionality reduction and supervised machine learning

Miguel Conceição, Alberto Krone-Martins, Antonio da Silva and Ángeles Moliné
Astronomy & Astrophysics 681 A123 (2024)
https://doi.org/10.1051/0004-6361/202346734

Sacrificing information for the greater good: how to select photometric bands for optimal accuracy

Kristoffer Stensbo-Smidt, Fabian Gieseke, Christian Igel, Andrew Zirm and Kim Steenstrup Pedersen
Monthly Notices of the Royal Astronomical Society 464 (3) 2577 (2017)
https://doi.org/10.1093/mnras/stw2476

CO emissions from optically selected galaxies at z  ∼ 0.1–0.2: Tight anti-correlation between molecular gas fraction and 4000 Å break strength

Kana Morokuma-Matsui, Junichi Baba, Kazuo Sorai and Nario Kuno
Publications of the Astronomical Society of Japan 67 (3) (2015)
https://doi.org/10.1093/pasj/psv005

Data mining for cataclysmic variables in the Large Sky Area Multi-Object Fibre Spectroscopic Telescope archive

B. Jiang, A. Luo, Y. Zhao and P. Wei
Monthly Notices of the Royal Astronomical Society 430 (2) 986 (2013)
https://doi.org/10.1093/mnras/sts665

A semi-empirical library of galaxy spectra forGaiaclassification based on SDSS data and PÉGASE models

P. Tsalmantza, A. Karampelas, M. Kontizas, et al.
Astronomy & Astrophysics 537 A42 (2012)
https://doi.org/10.1051/0004-6361/201117125

ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

Joseph W. Richards, Dan L. Starr, Henrik Brink, et al.
The Astrophysical Journal 744 (2) 192 (2012)
https://doi.org/10.1088/0004-637X/744/2/192

QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE

Dae-Won Kim, Pavlos Protopapas, Yong-Ik Byun, et al.
The Astrophysical Journal 735 (2) 68 (2011)
https://doi.org/10.1088/0004-637X/735/2/68

Fitting the integrated spectral energy distributions of galaxies

Jakob Walcher, Brent Groves, Tamás Budavári and Daniel Dale
Astrophysics and Space Science 331 (1) 1 (2011)
https://doi.org/10.1007/s10509-010-0458-z

Synthetic stellar and SSP libraries as templates for Gaia simulations

Rosanna Sordo, Antonella Vallenari, Rosaria Tantalo, et al.
Astrophysics and Space Science 328 (1-2) 331 (2010)
https://doi.org/10.1007/s10509-010-0272-7

Towards a library of synthetic galaxy spectra and preliminary results of classification and parametrization of unresolved galaxies for Gaia. II

P. Tsalmantza, M. Kontizas, B. Rocca-Volmerange, et al.
Astronomy & Astrophysics 504 (3) 1071 (2009)
https://doi.org/10.1051/0004-6361/200912014

Synthetic Stellar libraries and SSP simulations in the Gaia Era

Antonella Vallenari, Rosanna Sordo, Rosaria Tantalo, et al.
Proceedings of the International Astronomical Union 5 (S262) 444 (2009)
https://doi.org/10.1017/S1743921310003637

Finding rare objects and building pure samples: probabilistic quasar classification from low-resolution Gaia spectra

C. A. L. Bailer-Jones, K. W. Smith, C. Tiede, R. Sordo and A. Vallenari
Monthly Notices of the Royal Astronomical Society 391 (4) 1838 (2008)
https://doi.org/10.1111/j.1365-2966.2008.13983.x

Principal Manifolds for Data Visualization and Dimension Reduction

Jochen Einbeck, Ludger Evers and Coryn Bailer-Jones
Lecture Notes in Computational Science and Enginee, Principal Manifolds for Data Visualization and Dimension Reduction 58 178 (2008)
https://doi.org/10.1007/978-3-540-73750-6_7