Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Guided slow MHD waves in partially ionised solar atmosphere driven by a monochromatic source

Abdulaziz H. Alharbi, Hasan H. Hijji, Hazza Alqurashi and W. M. Moslem
Journal of Umm Al-Qura University for Engineering and Architecture 16 (1) 42 (2025)
https://doi.org/10.1007/s43995-024-00087-9

Propagation of Waves in Weakly Ionized Two-fluid Plasmas. I. Small-amplitude Alfvénic Waves

David Martínez-Gómez
The Astrophysical Journal 982 (1) 4 (2025)
https://doi.org/10.3847/1538-4357/adb713

Magnetohydrodynamic waves in the partially ionized solar plasma

Roberto Soler
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2272) (2024)
https://doi.org/10.1098/rsta.2023.0223

Interplay between the non-resonant streaming instability and self-generated pressure anisotropies

A Marret, A Ciardi and R Smets
Monthly Notices of the Royal Astronomical Society 532 (4) 4082 (2024)
https://doi.org/10.1093/mnras/stae1773

The influence of thermal pressure gradients and ionization (im)balance on the ambipolar diffusion and charge-neutral drifts

M. M. Gómez Míguez, D. Martínez Gómez, E. Khomenko and N. Vitas
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2272) (2024)
https://doi.org/10.1098/rsta.2023.0228

Magnetoacoustic waves in a partially ionized astrophysical plasma with the thermal misbalance: A two-fluid approach

N. E. Molevich, S. Yu. Pichugin and D. S. Riashchikov
Physics of Plasmas 31 (4) (2024)
https://doi.org/10.1063/5.0201945

Numerical experiments on granulation-generated two-fluid waves and flows in a solar magnetic carpet

R Niedziela, K Murawski and A K Srivastava
Monthly Notices of the Royal Astronomical Society 534 (3) 2998 (2024)
https://doi.org/10.1093/mnras/stae2293

Wave Conversion, Decay, and Heating in a Partially Ionized Two-fluid Magneto-atmosphere

Paul S. Cally and M. M. Gómez-Míguez
The Astrophysical Journal 946 (2) 108 (2023)
https://doi.org/10.3847/1538-4357/acbb63

Analysis of Solitary Waves on Non-planar Geometry in a Weakly Ionized Collisional Plasma with Cairns-Gurevich Distributed Electrons

Anindya Paul, Niranjan Paul, Prasanta Chatterjee and Kajal Kumar Mondal
Brazilian Journal of Physics 53 (1) (2023)
https://doi.org/10.1007/s13538-022-01217-1

Phase Mixing of Propagating Alfvén Waves in a Single-fluid Partially Ionized Solar Plasma

M. McMurdo, I. Ballai, G. Verth, A. Alharbi and V. Fedun
The Astrophysical Journal 958 (1) 81 (2023)
https://doi.org/10.3847/1538-4357/ad0364

Damping of MHD turbulence in a partially ionized medium

Yue Hu, Siyao Xu, Lev Arzamasskiy, James M Stone and A Lazarian
Monthly Notices of the Royal Astronomical Society 527 (2) 3945 (2023)
https://doi.org/10.1093/mnras/stad3493

Impulsively generated two-fluid magnetoacoustic-gravity waves: Solar chromosphere heating and plasma outflows

R. Niedziela, K. Murawski, L. Kadowaki, T. Zaqarashvili and S. Poedts
Astronomy & Astrophysics 668 A32 (2022)
https://doi.org/10.1051/0004-6361/202244844

The Effect of Thermal Misbalance on Slow Magnetoacoustic Waves in a Partially Ionized Prominence-Like Plasma

M. H. Ibañez and J. L. Ballester
Solar Physics 297 (11) (2022)
https://doi.org/10.1007/s11207-022-02071-9

Nonlinear Induction of Acoustic Perturbations by Alfven Waves in Partially Ionized Plasma

S. A. Belov and S. Yu. Pichugin
Bulletin of the Lebedev Physics Institute 49 (11) 357 (2022)
https://doi.org/10.3103/S1068335622110033

Chromospheric Heating by Magnetohydrodynamic Waves and Instabilities

A. K. Srivastava, J. L. Ballester, P. S. Cally, et al.
Journal of Geophysical Research: Space Physics 126 (6) (2021)
https://doi.org/10.1029/2020JA029097

The first adiabatic exponent in a partially ionized prominence plasma: Effect on the period of slow waves

J. L. Ballester, R. Soler, M. Carbonell and J. Terradas
Astronomy & Astrophysics 656 A159 (2021)
https://doi.org/10.1051/0004-6361/202141851

3D numerical simulations of propagating two-fluid, torsional Alfvén waves and heating of a partially ionized solar chromosphere

B Kuźma, K Murawski and S Poedts
Monthly Notices of the Royal Astronomical Society 506 (1) 989 (2021)
https://doi.org/10.1093/mnras/stab1780

Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves

M. Pelekhata, K. Murawski and S. Poedts
Astronomy & Astrophysics 652 A114 (2021)
https://doi.org/10.1051/0004-6361/202141262

Study on Magnetohydrodynamic Turbulence and Its Astrophysical Applications

Siyao Xu
Springer Theses, Study on Magnetohydrodynamic Turbulence and Its Astrophysical Applications 1 (2019)
https://doi.org/10.1007/978-981-13-7515-6_1

Heating of a Quiet Region of the Solar Chromosphere by Ion and Neutral Acoustic Waves

B. Kuźma, D. Wójcik and K. Murawski
The Astrophysical Journal 878 (2) 81 (2019)
https://doi.org/10.3847/1538-4357/ab1b4a

MHDSTS: a new explicit numerical scheme for simulations of partially ionised solar plasma

P. A. González-Morales, E. Khomenko, T. P. Downes and A. de Vicente
Astronomy & Astrophysics 615 A67 (2018)
https://doi.org/10.1051/0004-6361/201731916

The temporal behaviour of MHD waves in a partially ionized prominence-like plasma: Effect of heating and cooling

J. L. Ballester, M. Carbonell, R. Soler and J. Terradas
Astronomy & Astrophysics 609 A6 (2018)
https://doi.org/10.1051/0004-6361/201731567

The effects of resistivity and viscosity on the Kelvin- Helmholtz instability in oscillating coronal loops

T. A. Howson, I. De Moortel and P. Antolin
Astronomy & Astrophysics 602 A74 (2017)
https://doi.org/10.1051/0004-6361/201630259

Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

David Martínez-Gómez, Roberto Soler and Jaume Terradas
The Astrophysical Journal 837 (1) 80 (2017)
https://doi.org/10.3847/1538-4357/aa5eab

Two-dimensional Radiative Magnetohydrodynamic Simulations of Partial Ionization in the Chromosphere. II. Dynamics and Energetics of the Low Solar Atmosphere

Juan Martínez-Sykora, Bart De Pontieu, Mats Carlsson, Viggo H. Hansteen, Daniel Nóbrega-Siverio and Boris V. Gudiksen
The Astrophysical Journal 847 (1) 36 (2017)
https://doi.org/10.3847/1538-4357/aa8866

HEATING OF THE PARTIALLY IONIZED SOLAR CHROMOSPHERE BY WAVES IN MAGNETIC STRUCTURES

S. Shelyag, E. Khomenko, A. de Vicente and D. Przybylski
The Astrophysical Journal Letters 819 (1) L11 (2016)
https://doi.org/10.3847/2041-8205/819/1/L11

MULTI-FLUID APPROACH TO HIGH-FREQUENCY WAVES IN PLASMAS. I. SMALL-AMPLITUDE REGIME IN FULLY IONIZED MEDIUM

David Martínez-Gómez, Roberto Soler and Jaume Terradas
The Astrophysical Journal 832 (2) 101 (2016)
https://doi.org/10.3847/0004-637X/832/2/101

Prominence oscillations: Effect of a time-dependent background temperature

J. L. Ballester, M. Carbonell, R. Soler and J. Terradas
Astronomy & Astrophysics 591 A109 (2016)
https://doi.org/10.1051/0004-6361/201527953

DAMPING OF MAGNETOHYDRODYNAMIC TURBULENCE IN PARTIALLY IONIZED PLASMA: IMPLICATIONS FOR COSMIC RAY PROPAGATION

Siyao Xu, Huirong Yan and A. Lazarian
The Astrophysical Journal 826 (2) 166 (2016)
https://doi.org/10.3847/0004-637X/826/2/166

The role of partial ionization effects in the chromosphere

Juan Martínez-Sykora, Bart De Pontieu, Viggo Hansteen and Mats Carlsson
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 (2042) 20140268 (2015)
https://doi.org/10.1098/rsta.2014.0268

Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effects

E. Khomenko, A. Díaz, A. de Vicente, M. Collados and M. Luna
Astronomy & Astrophysics 565 A45 (2014)
https://doi.org/10.1051/0004-6361/201322918

Fluid description of multi-component solar partially ionized plasma

E. Khomenko, M. Collados, A. Díaz and N. Vitas
Physics of Plasmas 21 (9) (2014)
https://doi.org/10.1063/1.4894106

Rayleigh-Taylor instability in partially ionized compressible plasmas: One fluid approach

A. J. Díaz, E. Khomenko and M. Collados
Astronomy & Astrophysics 564 A97 (2014)
https://doi.org/10.1051/0004-6361/201322147

Torsional Alfvén waves in partially ionized solar plasma: effects of neutral helium and stratification

T. V. Zaqarashvili, M. L. Khodachenko and R. Soler
Astronomy & Astrophysics 549 A113 (2013)
https://doi.org/10.1051/0004-6361/201220272

Effect of partial ionization on wave propagation in solar magnetic flux tubes

R. Soler, A. J. Díaz, J. L. Ballester and M. Goossens
Astronomy & Astrophysics 551 A86 (2013)
https://doi.org/10.1051/0004-6361/201220576

PROPAGATION OF ALFVÉNIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES

A. J. B. Russell and L. Fletcher
The Astrophysical Journal 765 (2) 81 (2013)
https://doi.org/10.1088/0004-637X/765/2/81

Solution of Magnetohydrodynamic Oscillations in Electrolytes with Ion-Neutral Collisions

Yuan-Tao Liu, Hua Zhao, Lei Li and Yong-Yong Feng
Chinese Physics Letters 29 (11) 115201 (2012)
https://doi.org/10.1088/0256-307X/29/11/115201

Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere

T. V. Zaqarashvili, M. Carbonell, J. L. Ballester and M. L. Khodachenko
Astronomy & Astrophysics 544 A143 (2012)
https://doi.org/10.1051/0004-6361/201219763

Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach

T. V. Zaqarashvili, M. L. Khodachenko and H. O. Rucker
Astronomy & Astrophysics 529 A82 (2011)
https://doi.org/10.1051/0004-6361/201016326

Damping of Alfvén waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach

T. V. Zaqarashvili, M. L. Khodachenko and H. O. Rucker
Astronomy & Astrophysics 534 A93 (2011)
https://doi.org/10.1051/0004-6361/201117380

Damped large amplitude transverse oscillations in an EUV solar prominence, triggered by large-scale transient coronal waves

J. Hershaw, C. Foullon, V. M. Nakariakov and E. Verwichte
Astronomy & Astrophysics 531 A53 (2011)
https://doi.org/10.1051/0004-6361/201116750

Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionised prominence medium: Effect of a background flow

S. Barceló, M. Carbonell and J. L. Ballester
Astronomy & Astrophysics 525 A60 (2011)
https://doi.org/10.1051/0004-6361/201015499

Physics of Solar Prominences: II—Magnetic Structure and Dynamics

D. H. Mackay, J. T. Karpen, J. L. Ballester, B. Schmieder and G. Aulanier
Space Science Reviews 151 (4) 333 (2010)
https://doi.org/10.1007/s11214-010-9628-0

Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionized prominence plasma: effect of helium

R. Soler, R. Oliver and J. L. Ballester
Astronomy and Astrophysics 512 A28 (2010)
https://doi.org/10.1051/0004-6361/200913478

SEISMOLOGY OF STANDING KINK OSCILLATIONS OF SOLAR PROMINENCE FINE STRUCTURES

R. Soler, I. Arregui, R. Oliver and J. L. Ballester
The Astrophysical Journal 722 (2) 1778 (2010)
https://doi.org/10.1088/0004-637X/722/2/1778

The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma

M. Carbonell, P. Forteza, R. Oliver and J. L. Ballester
Astronomy and Astrophysics 515 A80 (2010)
https://doi.org/10.1051/0004-6361/200913024

Attenuation of small-amplitude oscillations in a prominence–corona model with a transverse magnetic field

R. Soler, R. Oliver and J.L. Ballester
New Astronomy 14 (3) 238 (2009)
https://doi.org/10.1016/j.newast.2008.08.008

Effect of steady flow and Newton's cooling on the propagation and damping of small-amplitude prominence plasma oscillations

K. A. P. SINGH and B. N. DWIVEDI
Journal of Plasma Physics 75 (4) 517 (2009)
https://doi.org/10.1017/S0022377808007794

RESONANTLY DAMPED KINK MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

R. Soler, R. Oliver and J. L. Ballester
The Astrophysical Journal 707 (1) 662 (2009)
https://doi.org/10.1088/0004-637X/707/1/662

Nonadiabatic Magnetohydrodynamic Waves in a Cylindrical Prominence Thread with Mass Flow

R. Soler, R. Oliver and J. L. Ballester
The Astrophysical Journal 684 (1) 725 (2008)
https://doi.org/10.1086/590244

Time damping of non-adiabatic MHD waves in an unbounded partially ionised prominence plasma

P. Forteza, R. Oliver and J. L. Ballester
Astronomy & Astrophysics 492 (1) 223 (2008)
https://doi.org/10.1051/0004-6361:200810370

Damping of Fast Magnetohydrodynamic Oscillations in Quiescent Filament Threads

Iñigo Arregui, Jaume Terradas, Ramón Oliver and José Luis Ballester
The Astrophysical Journal 682 (2) L141 (2008)
https://doi.org/10.1086/591081

The effect of the solar corona on the attenuation of small-amplitude prominence oscillations

R. Soler, R. Oliver and J. L. Ballester
Astronomy & Astrophysics 471 (3) 1023 (2007)
https://doi.org/10.1051/0004-6361:20077633

Attenuation of non-adiabatic oscillations in a cartesian prominence fibril

R. Soler, R. Oliver and J. L. Ballester
Proceedings of the International Astronomical Union 3 (S247) 173 (2007)
https://doi.org/10.1017/S1743921308014841