Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

CSST Strong-lensing Preparation: A Framework for Detecting Strong Lenses in the Multicolor Imaging Survey by the China Survey Space Telescope (CSST)

Xu Li, Ruiqi Sun, Jiameng Lv, Peng Jia, Nan Li, Chengliang Wei, Hu Zou, Xinzhong Er, Yun Chen, Zhang Ban, Yuedong Fang, Qi Guo, Dezi Liu, Guoliang Li, Lin Lin, Ming Li, Ran Li, Xiaobo Li, Yu Luo, Xianmin Meng, Jundan Nie, Zhaoxiang Qi, Yisheng Qiu, Li Shao, Hao Tian, et al.
The Astronomical Journal 167 (6) 264 (2024)
https://doi.org/10.3847/1538-3881/ad395e

Searching for Strong Gravitational Lenses

Cameron Lemon, Frédéric Courbin, Anupreeta More, Paul Schechter, Raoul Cañameras, Ludovic Delchambre, Calvin Leung, Yiping Shu, Chiara Spiniello, Yashar Hezaveh, Jonas Klüter and Richard McMahon
Space Science Reviews 220 (2) (2024)
https://doi.org/10.1007/s11214-024-01042-9

Detection of Strongly Lensed Arcs in Galaxy Clusters with Transformers

Peng Jia, Ruiqi Sun, Nan Li, Yu Song, Runyu Ning, Hongyan Wei and Rui Luo
The Astronomical Journal 165 (1) 26 (2023)
https://doi.org/10.3847/1538-3881/aca1c2

Efficient image denoising technique using the meshless method: Investigation of operator splitting RBF collocation method for two anisotropic diffusion-based PDEs

Yasaman Lotfi and Kourosh Parand
Computers & Mathematics with Applications 113 315 (2022)
https://doi.org/10.1016/j.camwa.2022.03.013

Finding strong gravitational lenses through self-attention

Hareesh Thuruthipilly, Adam Zadrozny, Agnieszka Pollo and Marek Biesiada
Astronomy & Astrophysics 664 A4 (2022)
https://doi.org/10.1051/0004-6361/202142463

On building a cluster watchlist for identifying strongly lensed supernovae, gravitational waves and kilonovae

Mathilde Jauzac, Andrew Robertson, Richard Massey, et al.
Monthly Notices of the Royal Astronomical Society 495 (2) 1666 (2020)
https://doi.org/10.1093/mnras/staa1274

Finding high-redshift strong lenses in DES using convolutional neural networks

C Jacobs, T Collett, K Glazebrook, et al.
Monthly Notices of the Royal Astronomical Society 484 (4) 5330 (2019)
https://doi.org/10.1093/mnras/stz272

Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique

Camille Avestruz, Nan Li, Hanjue 涵珏 Zhu 朱, Matthew Lightman, Thomas E. Collett and Wentao Luo
The Astrophysical Journal 877 (1) 58 (2019)
https://doi.org/10.3847/1538-4357/ab16d9

LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks

C E Petrillo, C Tortora, G Vernardos, et al.
Monthly Notices of the Royal Astronomical Society 484 (3) 3879 (2019)
https://doi.org/10.1093/mnras/stz189

Machine learning and Kolmogorov analysis to reveal gravitational lenses

S S Mirzoyan, H Khachatryan, G Yegorian and V G Gurzadyan
Monthly Notices of the Royal Astronomical Society: Letters 489 (1) L32 (2019)
https://doi.org/10.1093/mnrasl/slz125

Using convolutional neural networks to identify gravitational lenses in astronomical images

Andrew Davies, Stephen Serjeant and Jane M Bromley
Monthly Notices of the Royal Astronomical Society 487 (4) 5263 (2019)
https://doi.org/10.1093/mnras/stz1288

Using deep Residual Networks to search for galaxy-Ly α emitter lens candidates based on spectroscopic selection

Rui Li, Yiping Shu, Jianlin Su, et al.
Monthly Notices of the Royal Astronomical Society 482 (1) 313 (2019)
https://doi.org/10.1093/mnras/sty2708

EasyCritics – I. Efficient detection of strongly lensing galaxy groups and clusters in wide-field surveys

Sebastian Stapelberg, Mauricio Carrasco and Matteo Maturi
Monthly Notices of the Royal Astronomical Society 482 (2) 1824 (2019)
https://doi.org/10.1093/mnras/sty2784

LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses

Milad Pourrahmani, Hooshang Nayyeri and Asantha Cooray
The Astrophysical Journal 856 (1) 68 (2018)
https://doi.org/10.3847/1538-4357/aaae6a

Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

C. E. Petrillo, C. Tortora, S. Chatterjee, et al.
Monthly Notices of the Royal Astronomical Society 472 (1) 1129 (2017)
https://doi.org/10.1093/mnras/stx2052

A neural network gravitational arc finder based on the Mediatrix filamentation method

C. R. Bom, M. Makler, M. P. Albuquerque and C. H. Brandt
Astronomy & Astrophysics 597 A135 (2017)
https://doi.org/10.1051/0004-6361/201629159

Space Warps– II. New gravitational lens candidates from the CFHTLS discovered through citizen science

Anupreeta More, Aprajita Verma, Philip J. Marshall, et al.
Monthly Notices of the Royal Astronomical Society 455 (2) 1191 (2016)
https://doi.org/10.1093/mnras/stv1965

THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS

Bingxiao Xu, Marc Postman, Massimo Meneghetti, Stella Seitz, Adi Zitrin, Julian Merten, Dani Maoz, Brenda Frye, Keiichi Umetsu, Wei Zheng, Larry Bradley, Jesus Vega and Anton Koekemoer
The Astrophysical Journal 817 (2) 85 (2016)
https://doi.org/10.3847/0004-637X/817/2/85

OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA*

B. Nord, E. Buckley-Geer, H. Lin, H. T. Diehl, J. Helsby, N. Kuropatkin, A. Amara, T. Collett, S. Allam, G. B. Caminha, C. De Bom, S. Desai, H. Dúmet-Montoya, M. Elidaiana da S. Pereira, D. A. Finley, B. Flaugher, C. Furlanetto, H. Gaitsch, M. Gill, K. W. Merritt, A. More, D. Tucker, A. Saro, E. S. Rykoff, E. Rozo, et al.
The Astrophysical Journal 827 (1) 51 (2016)
https://doi.org/10.3847/0004-637X/827/1/51

THE CFHTLS-STRONG LENSING LEGACY SURVEY (SL2S): INVESTIGATING THE GROUP-SCALE LENSES WITH THE SARCS SAMPLE

A. More, R. Cabanac, S. More, et al.
The Astrophysical Journal 749 (1) 38 (2012)
https://doi.org/10.1088/0004-637X/749/1/38

The lensing efficiencies of MACS X-ray-selected versus RCS optically selected galaxy clusters

Assaf Horesh, Dan Maoz, Harald Ebeling, Gregor Seidel and Matthias Bartelmann
Monthly Notices of the Royal Astronomical Society no (2010)
https://doi.org/10.1111/j.1365-2966.2010.16763.x

Multiscale Astronomical Image Processing Based on Nonlinear Partial Differential Equations

Meyer Pesenson, William Roby and Bruce McCollum
The Astrophysical Journal 683 (1) 566 (2008)
https://doi.org/10.1086/589276

THE SLOAN DIGITAL SKY SURVEY DISCOVERY OF A STRONGLY LENSED POST-STARBURST GALAXY ATz= 0.766

Min-Su Shin, Michael A. Strauss, Masamune Oguri, et al.
The Astronomical Journal 136 (1) 44 (2008)
https://doi.org/10.1088/0004-6256/136/1/44

Relativistic Astrophysics Legacy and Cosmology – Einstein’s

W. Kausch, M. Gitti, T. Erben and S. Schindler
ESO Astrophysics Symposia, Relativistic Astrophysics Legacy and Cosmology – Einstein’s 326 (2008)
https://doi.org/10.1007/978-3-540-74713-0_75

ARCRAIDER. I. Detailed optical and X-ray analysis of the cooling flow cluster Z3146

W. Kausch, M. Gitti, T. Erben and S. Schindler
Astronomy & Astrophysics 471 (1) 31 (2007)
https://doi.org/10.1051/0004-6361:20054413

A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample

J. Estrada, J. Annis, H. T. Diehl, et al.
The Astrophysical Journal 660 (2) 1176 (2007)
https://doi.org/10.1086/512599

The Lensed Arc Production Efficiency of Galaxy Clusters: A Comparison of Matched Observed and Simulated Samples

Assaf Horesh, Eran O. Ofek, Dan Maoz, et al.
The Astrophysical Journal 633 (2) 768 (2005)
https://doi.org/10.1086/466519