The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
J. Llibre , M. Ollé
A&A, 378 3 (2001) 1087-1099
Published online: 2001-11-15
This article has been cited by the following article(s):
29 articles
Theoretical and computational models for Saturn’s co-orbiting moons, Janus and Epimetheus
Sean O’Neill, Katrina Hay and Justin deMattos Celestial Mechanics and Dynamical Astronomy 136 (4) (2024) https://doi.org/10.1007/s10569-024-10200-8
Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion
Kyriaki I. Antoniadou and Dimitri Veras Astronomy & Astrophysics 690 A249 (2024) https://doi.org/10.1051/0004-6361/202451714
Breakdown of homoclinic orbits to L3 in the RPC3BP (II). An asymptotic formula
Inmaculada Baldomá, Mar Giralt and Marcel Guardia Advances in Mathematics 430 109218 (2023) https://doi.org/10.1016/j.aim.2023.109218
2D and 3D axi-symmetric horseshoe periodic orbits about Lagrangian points: A global grid search approach
Saleem Yousuf and Ram Kishor Icarus 387 115207 (2022) https://doi.org/10.1016/j.icarus.2022.115207
A Review on Co-orbital Motion in Restricted and Planetary Three-body Problems
TAN Pan, SHEN Xin-he, HOU Xi-yun and LIAO Xin-hao Chinese Astronomy and Astrophysics 46 (4) 346 (2022) https://doi.org/10.1016/j.chinastron.2022.11.008
Study of the ejection/collision orbits in the spatial RTBP using the McGehee regularization
M. Ollé, Ó. Rodríguez and J. Soler Communications in Nonlinear Science and Numerical Simulation 111 106410 (2022) https://doi.org/10.1016/j.cnsns.2022.106410
Families of Symmetric Exchange Orbits in the Planar $$(1+2n)$$-Body Problem
Abimael Bengochea, Jorge Galán-Vioque and Ernesto Pérez-Chavela Qualitative Theory of Dynamical Systems 20 (2) (2021) https://doi.org/10.1007/s12346-021-00473-x
On the Co-orbital Motion in the Three-Body Problem: Existence of Quasi-periodic Horseshoe-Shaped Orbits
Laurent Niederman, Alexandre Pousse and Philippe Robutel Communications in Mathematical Physics 377 (1) 551 (2020) https://doi.org/10.1007/s00220-020-03690-8
Low-thrust transfer to the Earth-Moon triangular libration point via horseshoe orbit
Xingji He, Yuying Liang, Ming Xu and Yaru Zheng Acta Astronautica 177 111 (2020) https://doi.org/10.1016/j.actaastro.2020.07.014
On Co-Orbital Quasi-Periodic Motion in the Three-Body Problem
Josep M. Cors, Jesús F. Palacián and Patricia Yanguas SIAM Journal on Applied Dynamical Systems 18 (1) 334 (2019) https://doi.org/10.1137/18M1190859
Horseshoe orbits in the restricted four-body problem
Jaime Burgos-Garcia and Abimael Bengochea Astrophysics and Space Science 362 (11) (2017) https://doi.org/10.1007/s10509-017-3193-x
Exchange orbits in the planar 1+4 body problem
A. Bengochea, J. Galán and E. Pérez-Chavela Physica D: Nonlinear Phenomena 301-302 21 (2015) https://doi.org/10.1016/j.physd.2015.03.006
Horseshoe periodic orbits with one symmetry in the general planar three-body problem
Abimael Bengochea, Manuel Falconi and Ernesto Pérez-Chavela Discrete & Continuous Dynamical Systems - A 33 (3) 987 (2013) https://doi.org/10.3934/dcds.2013.33.987
Doubly-symmetric horseshoe orbits in the general planar three-body problem
Abimael Bengochea, Jorge Galán and Ernesto Pérez-Chavela Astrophysics and Space Science 348 (2) 403 (2013) https://doi.org/10.1007/s10509-013-1590-3
Exchange orbits: an interesting case of co-orbital motion
Barbara Funk, Rudolf Dvorak and Richard Schwarz Celestial Mechanics and Dynamical Astronomy 117 (1) 41 (2013) https://doi.org/10.1007/s10569-013-9497-4
Symmetric horseshoe periodic orbits in the general planar three-body problem
Abimael Bengochea, Manuel Falconi and Ernesto Pérez-Chavela Astrophysics and Space Science 333 (2) 399 (2011) https://doi.org/10.1007/s10509-011-0641-x
Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP
E Barrabés, J M Mondelo and M Ollé Nonlinearity 22 (12) 2901 (2009) https://doi.org/10.1088/0951-7715/22/12/006
Dynamical aspects of multi-round horseshoe-shaped homoclinic orbits in the RTBP
E. Barrabés, J. M. Mondelo and M. Ollé Celestial Mechanics and Dynamical Astronomy 105 (1-3) 197 (2009) https://doi.org/10.1007/s10569-009-9190-9
THE SYMMETRIC HORSESHOE PERIODIC FAMILIES AND THE LYAPUNOV PLANAR FAMILY AROUNDL3
X. Y. Hou and L. Liu The Astronomical Journal 136 (1) 67 (2008) https://doi.org/10.1088/0004-6256/136/1/67
Periodic solutions of the restricted three-body problem for a small mass ratio
A.D. Bruno and V.P. Varin Journal of Applied Mathematics and Mechanics 71 (6) 933 (2007) https://doi.org/10.1016/j.jappmathmech.2007.12.012
BIFURCATIONS IN DYNAMICS OF SHEPHERD SYSTEMS
JOYCE MACABÉA International Journal of Bifurcation and Chaos 17 (02) 545 (2007) https://doi.org/10.1142/S0218127407017410
Invariant manifolds ofL3and horseshoe motion in the restricted three-body problem
Esther Barrabés and Mercè Ollé Nonlinearity 19 (9) 2065 (2006) https://doi.org/10.1088/0951-7715/19/9/004
Families of periodic horseshoe orbits in the restricted three-body problem
E. Barrabés and S. Mikkola Astronomy & Astrophysics 432 (3) 1115 (2005) https://doi.org/10.1051/0004-6361:20041483
Horsing Around on Saturn
ROBERT J. VANDERBEI Annals of the New York Academy of Sciences 1065 (1) 336 (2005) https://doi.org/10.1196/annals.1370.018
New Advances in Celestial Mechanics and Hamiltonian Systems
J. Llibre and Mercè Ollé New Advances in Celestial Mechanics and Hamiltonian Systems 137 (2004) https://doi.org/10.1007/978-1-4419-9058-7_9
Orbits and masses of Saturn's coorbital and F-ring shepherding satellites
Robert A. Jacobson and Richard G. French Icarus 172 (2) 382 (2004) https://doi.org/10.1016/j.icarus.2004.08.018
Pini Gurfil and Jeremy Kasdin (2004) https://doi.org/10.2514/6.2004-4986
Coorbital Periodic Orbits in the Three Body Problem
Josep M. Cors and Glen R. Hall SIAM Journal on Applied Dynamical Systems 2 (2) 219 (2003) https://doi.org/10.1137/S1111111102411304
Canonical modelling of coorbital motion in Hill's problem using epicyclic orbital elements
P. Gurfil and N. J. Kasdin Astronomy & Astrophysics 409 (3) 1135 (2003) https://doi.org/10.1051/0004-6361:20031162