The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
S. Sello
A&A, 377 1 (2001) 312-320
Published online: 2001-10-15
This article has been cited by the following article(s):
92 articles
Dynamical complexity and multifractal analysis of geomagnetic activities at high temporal scales over three solar cycles
Samuel Ogunjo, Joshua Akinsusi, Babatunde Rabiu and Ibiyinka Fuwape Journal of Atmospheric and Solar-Terrestrial Physics 265 106380 (2024) https://doi.org/10.1016/j.jastp.2024.106380
An optimized wavelet neural networks using cuckoo search algorithm for function approximation and chaotic time series prediction
Pauline Ong and Zarita Zainuddin Decision Analytics Journal 6 100188 (2023) https://doi.org/10.1016/j.dajour.2023.100188
Emergence of a resonance in machine learning
Zheng-Meng Zhai, Ling-Wei Kong and Ying-Cheng Lai Physical Review Research 5 (3) (2023) https://doi.org/10.1103/PhysRevResearch.5.033127
Optimized cascade chaotic fuzzy system (OCCFS) and its application to function approximation and chaotic systems identification
Hamid Abbasi and Mahdi Yaghoobi Soft Computing 27 (13) 8561 (2023) https://doi.org/10.1007/s00500-023-08171-3
Predictions of solar activity cycles 25 and 26 using non-linear autoregressive exogenous neural networks
Mirkan Y Kalkan, Diaa E Fawzy and A Talat Saygac Monthly Notices of the Royal Astronomical Society 523 (1) 1175 (2023) https://doi.org/10.1093/mnras/stad1460
Predicting the Functional Dependence of the Sunspot Number in the Solar Activity Cycle Based on Elman Artificial Neural Network
I. V. Krasheninnikov and S. O. Chumakov Geomagnetism and Aeronomy 63 (2) 215 (2023) https://doi.org/10.1134/S0016793222600904
I. Krasheninnikov and S. Chumakov 724 824 (2023) https://doi.org/10.1007/978-3-031-35314-7_68
Predicting the Functional Dependence of the Sunspot Number
in the Solar Activity Cycle Based on Elman Artificial Neural Network
I. V. Krasheninnikov and S. O. Chumakov Геомагнетизм и аэрономия 63 (2) 247 (2023) https://doi.org/10.31857/S0016794022600612
Cascade chaotic neural network (CCNN): a new model
Hamid Abbasi, Mahdi Yaghoobi, Mohammad Teshnehlab and Arash Sharifi Neural Computing and Applications 34 (11) 8897 (2022) https://doi.org/10.1007/s00521-022-06912-3
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Tatiana Podladchikova, Shantanu Jain, Astrid M. Veronig, et al. Astronomy & Astrophysics 663 A88 (2022) https://doi.org/10.1051/0004-6361/202243509
A Hybrid Modeling Method Based on Linear AR and Nonlinear DBN-AR Model for Time Series Forecasting
Wenquan Xu, Hui Peng, Xiaoyong Zeng, et al. Neural Processing Letters 54 (1) 1 (2022) https://doi.org/10.1007/s11063-021-10651-2
A non-linear approach to predicting the amplitude and timing of the sunspot area in cycle 25
Partha Chowdhury, Volkan Sarp, Ali Kilcik, et al. Monthly Notices of the Royal Astronomical Society 513 (3) 4152 (2022) https://doi.org/10.1093/mnras/stac1162
Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction
Rohitash Chandra, Shaurya Goyal and Rishabh Gupta IEEE Access 9 83105 (2021) https://doi.org/10.1109/ACCESS.2021.3085085
Finding nonlinear system equations and complex network structures from data: A sparse optimization approach
Ying-Cheng Lai Chaos: An Interdisciplinary Journal of Nonlinear Science 31 (8) (2021) https://doi.org/10.1063/5.0062042
Medium-term Predictions of F10.7 and F30 cm Solar Radio Flux with the Adaptive Kalman Filter
Elena Petrova, Tatiana Podladchikova, Astrid M. Veronig, Stijn Lemmens, Benjamin Bastida Virgili and Tim Flohrer The Astrophysical Journal Supplement Series 254 (1) 9 (2021) https://doi.org/10.3847/1538-4365/abef6d
Hemispheric sunspot numbers 1874–2020
Astrid M. Veronig, Shantanu Jain, Tatiana Podladchikova, Werner Pötzi and Frederic Clette Astronomy & Astrophysics 652 A56 (2021) https://doi.org/10.1051/0004-6361/202141195
A novel model for chaotic complex time series with large of data forecasting
Peng-Cheng Li, Fei Zhang, Lu Gao, Yong-Qian Liu and Xiao-Ying Ren Knowledge-Based Systems 222 107009 (2021) https://doi.org/10.1016/j.knosys.2021.107009
The North–South Asymmetry of Sunspot Relative Numbers Based on Complex Network Technique
Hengyu Xu, Yu Fei, Chun Li, Jiajuan Liang, Xinan Tian and Zhongjie Wan Symmetry 13 (11) 2228 (2021) https://doi.org/10.3390/sym13112228
Deep belief network-based AR model for nonlinear time series forecasting
Wenquan Xu, Hui Peng, Xiaoyong Zeng, et al. Applied Soft Computing 77 605 (2019) https://doi.org/10.1016/j.asoc.2019.02.006
A hybrid modelling method for time series forecasting based on a linear regression model and deep learning
Wenquan Xu, Hui Peng, Xiaoyong Zeng, et al. Applied Intelligence 49 (8) 3002 (2019) https://doi.org/10.1007/s10489-019-01426-3
Data-based prediction and causality inference of nonlinear dynamics
Huanfei Ma, Siyang Leng and Luonan Chen Science China Mathematics 61 (3) 403 (2018) https://doi.org/10.1007/s11425-017-9177-0
Prediction of solar cycle 25: a non-linear approach
V Sarp, A Kilcik, V Yurchyshyn, J P Rozelot and A Ozguc Monthly Notices of the Royal Astronomical Society 481 (3) 2981 (2018) https://doi.org/10.1093/mnras/sty2470
Co-evolutionary multi-task learning for dynamic time series prediction
Rohitash Chandra, Yew-Soon Ong and Chi-Keong Goh Applied Soft Computing 70 576 (2018) https://doi.org/10.1016/j.asoc.2018.05.041
Ravneil Nand and Bibhya Nand Sharma 172 (2017) https://doi.org/10.1109/APWConCSE.2017.00039
Recurrence quantification analysis of two solar cycle indices
Marco Stangalini, Ilaria Ermolli, Giuseppe Consolini and Fabrizio Giorgi Journal of Space Weather and Space Climate 7 A5 (2017) https://doi.org/10.1051/swsc/2017004
Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction
Rohitash Chandra, Yew-Soon Ong and Chi-Keong Goh Neurocomputing 243 21 (2017) https://doi.org/10.1016/j.neucom.2017.02.065
Ravneil Nand, Mohammed Naseem, Emmenual Reddy and Bibhya Nand Sharma 69 (2017) https://doi.org/10.1109/APWConCSE.2017.00021
Spatial-temporal forecasting the sunspot diagram
Eurico Covas Astronomy & Astrophysics 605 A44 (2017) https://doi.org/10.1051/0004-6361/201629130
Ravneil Nand 3102 (2016) https://doi.org/10.1109/CEC.2016.7744181
Evaluation of co-evolutionary neural network architectures for time series prediction with mobile application in finance
Rohitash Chandra and Shelvin Chand Applied Soft Computing 49 462 (2016) https://doi.org/10.1016/j.asoc.2016.08.029
Data based identification and prediction of nonlinear and complex dynamical systems
Wen-Xu Wang, Ying-Cheng Lai and Celso Grebogi Physics Reports 644 1 (2016) https://doi.org/10.1016/j.physrep.2016.06.004
Neural Information Processing
Ravneil Nand, Emmenual Reddy and Mohammed Naseem Lecture Notes in Computer Science, Neural Information Processing 9949 38 (2016) https://doi.org/10.1007/978-3-319-46675-0_5
Artificial Life and Computational Intelligence
Ravneil Nand and Rohitash Chandra Lecture Notes in Computer Science, Artificial Life and Computational Intelligence 9592 171 (2016) https://doi.org/10.1007/978-3-319-28270-1_15
Competition and Collaboration in Cooperative Coevolution of Elman Recurrent Neural Networks for Time-Series Prediction
Rohitash Chandra IEEE Transactions on Neural Networks and Learning Systems 26 (12) 3123 (2015) https://doi.org/10.1109/TNNLS.2015.2404823
When Daily Sunspot Births Become Positively Correlated
Alexander Shapoval, Jean-Louis Le Mouël, Mikhail Shnirman and Vincent Courtillot Solar Physics 290 (10) 2709 (2015) https://doi.org/10.1007/s11207-015-0778-9
Melissa N. Stolar, Margaret Lech and Ian S Burnett 1 (2015) https://doi.org/10.1109/ICSPCS.2015.7391785
Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction
Yiqian Cui, Junyou Shi and Zili Wang Neural Networks 71 11 (2015) https://doi.org/10.1016/j.neunet.2015.07.013
Pattern‐Similarity‐Based Model for Time Series Prediction
Saurabh Bhardwaj, Smriti Srivastava and J. R. P. Gupta Computational Intelligence 31 (1) 106 (2015) https://doi.org/10.1111/coin.12015
Scaled UKF–NARX hybrid model for multi-step-ahead forecasting of chaotic time series data
Said Jadid Abdulkadir and Suet-Peng Yong Soft Computing 19 (12) 3479 (2015) https://doi.org/10.1007/s00500-015-1833-z
STOCHASTIC DESCRIPTION OF THE HIGH-FREQUENCY CONTENT OF DAILY SUNSPOTS AND EVIDENCE FOR REGIME CHANGES
A. Shapoval, J.-L. Le Mouël, M. Shnirman and V. Courtillot The Astrophysical Journal 799 (1) 56 (2015) https://doi.org/10.1088/0004-637X/799/1/56
A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting
Majid Abdollahzade, Arash Miranian, Hossein Hassani and Hossein Iranmanesh Information Sciences 295 107 (2015) https://doi.org/10.1016/j.ins.2014.09.002
Can irregularities of solar proxies help understand quasi-biennial solar variations?
A. Shapoval, J. L. Le Mouël, M. Shnirman and V. Courtillot Nonlinear Processes in Geophysics 21 (4) 797 (2014) https://doi.org/10.5194/npg-21-797-2014
Can irregularities of solar proxies help understand quasi-biennial solar variations?
A. Shapoval, J. L. Le Mouël, M. Shnirman and V. Courtillot Nonlinear Processes in Geophysics Discussions 1 (1) 155 (2014) https://doi.org/10.5194/npgd-1-155-2014
Yilin Dong and Jianhua Zhang 157 (2014) https://doi.org/10.1109/IJCNN.2014.6889431
Shelvin Chand and Rohitash Chandra 190 (2014) https://doi.org/10.1109/IJCNN.2014.6889442
Rohitash Chandra 565 (2014) https://doi.org/10.1109/IJCNN.2014.6889421
Is a sudden increase of irregularity of sunspot numbers a precursor of a return to low solar activity?
A. Shapoval, J.‐L. Le Mouël, V. Courtillot and M. Shnirman Journal of Geophysical Research: Space Physics 119 (8) 6120 (2014) https://doi.org/10.1002/2013JA019584
A novel self-organizing complex neuro-fuzzy approach to the problem of time series forecasting
Chunshien Li, Tai-Wei Chiang and Long-Ching Yeh Neurocomputing 99 467 (2013) https://doi.org/10.1016/j.neucom.2012.07.014
Rohitash Chandra 1 (2013) https://doi.org/10.1109/IJCNN.2013.6706997
TWO REGIMES IN THE REGULARITY OF SUNSPOT NUMBER
A. Shapoval, J. L. Le Mouël, V. Courtillot and M. Shnirman The Astrophysical Journal 779 (2) 108 (2013) https://doi.org/10.1088/0004-637X/779/2/108
TAGUCHI'S DESIGN OF EXPERIMENT IN COMBINATION SELECTION FOR A CHAOTIC TIME SERIES FORECASTING METHOD USING ENSEMBLE ARTIFICIAL NEURAL NETWORKS
Muhammad Ardalani-Farsa and Saeed Zolfaghari Cybernetics and Systems 44 (4) 351 (2013) https://doi.org/10.1080/01969722.2013.789653
The chaotic solar cycle
A. Hanslmeier, R. Brajša, J. Čalogović, et al. Astronomy & Astrophysics 550 A6 (2013) https://doi.org/10.1051/0004-6361/201015215
A Kalman Filter Technique for Improving Medium-Term Predictions of the Sunspot Number
T. Podladchikova and R. Van der Linden Solar Physics 277 (2) 397 (2012) https://doi.org/10.1007/s11207-011-9899-y
Nonlinear time series modeling and prediction using functional weights wavelet neural network-based state-dependent AR model
Garba Inoussa, Hui Peng and Jun Wu Neurocomputing 86 59 (2012) https://doi.org/10.1016/j.neucom.2012.01.010
Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
Rohitash Chandra and Mengjie Zhang Neurocomputing 86 116 (2012) https://doi.org/10.1016/j.neucom.2012.01.014
A nonlinear full-shape curve prediction after the onset of the new solar cycle 24
Stefano Sello Journal of Atmospheric and Solar-Terrestrial Physics 80 252 (2012) https://doi.org/10.1016/j.jastp.2012.02.002
Forecasting the future: Is it possible for adiabatically time-varying nonlinear dynamical systems?
Rui Yang, Ying-Cheng Lai and Celso Grebogi Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (3) (2012) https://doi.org/10.1063/1.4740057
Integrated Systems, Design and Technology 2010
Elahe Arani, Caro Lucas and Babak N. Araabi Integrated Systems, Design and Technology 2010 345 (2011) https://doi.org/10.1007/978-3-642-17384-4_28
Computer Technology and Computer Programming
Sanjay Badjate and Sanjay Dudu Computer Technology and Computer Programming 9 (2011) https://doi.org/10.1201/b13124-3
Trend estimation and univariate forecast of the sunspot numbers: Development and comparison of ARMA, ARIMA and Autoregressive Neural Network models
Surajit Chattopadhyay, Deepak Jhajharia and Goutami Chattopadhyay Comptes Rendus. Géoscience 343 (7) 433 (2011) https://doi.org/10.1016/j.crte.2011.07.008
Reza Ezuan Samin, Muhammad Salihin Saealal, Azme Khamis, Syahirbanun Isa and Ruhaila Md. Kasmani 1 (2011) https://doi.org/10.1109/INECCE.2011.5953839
Chaotic time series prediction with residual analysis method using hybrid Elman–NARX neural networks
Muhammad Ardalani-Farsa and Saeed Zolfaghari Neurocomputing 73 (13-15) 2540 (2010) https://doi.org/10.1016/j.neucom.2010.06.004
Reza Ezuan Samin, Ruhaila Md. Kasmani, Azme Khamis and Syahirbanun Isa 10 (2010) https://doi.org/10.1109/ACT.2010.50
Recursive Gath–Geva clustering as a basis for evolving neuro-fuzzy modeling
Hossein Soleimani-B., Caro Lucas and Babak N. Araabi Evolving Systems 1 (1) 59 (2010) https://doi.org/10.1007/s12530-010-9006-x
Hossein Soleimani-B, Caro Lucas and Babak N. Araabi 1 (2010) https://doi.org/10.1109/FUZZY.2010.5584088
SPATIAL CORRELATION OF SOLAR WIND FLUCTUATIONS AND THEIR SOLAR CYCLE DEPENDENCE
R. T. Wicks, S. C. Chapman and R. O. Dendy The Astrophysical Journal 690 (1) 734 (2009) https://doi.org/10.1088/0004-637X/690/1/734
Novel FTLRNN with Gamma Memory for Short-Term and Long-Term Predictions of Chaotic Time Series
Sanjay L. Badjate and Sanjay V. Dudul Applied Computational Intelligence and Soft Computing 2009 1 (2009) https://doi.org/10.1155/2009/364532
Forecasting the parameters of sunspot cycle 24 and beyond
C. de Jager and S. Duhau Journal of Atmospheric and Solar-Terrestrial Physics 71 (2) 239 (2009) https://doi.org/10.1016/j.jastp.2008.11.006
Forecasting solar cycle 24 using neural networks
Jean Uwamahoro, Lee-Anne McKinnell and Pierre. J. Cilliers Journal of Atmospheric and Solar-Terrestrial Physics 71 (5) 569 (2009) https://doi.org/10.1016/j.jastp.2008.12.003
SUNSPOTS DATA ANALYSIS USING TIME SERIES
YUSUF H. SHAIKH, A. R. KHAN, M. I. IQBAL, S. H. BEHERE and S. P. BAGARE Fractals 16 (03) 259 (2008) https://doi.org/10.1142/S0218348X08004009
Forecast of the Decadal Average Sunspot Number
D. M. Volobuev and N. G. Makarenko Solar Physics 249 (1) 121 (2008) https://doi.org/10.1007/s11207-008-9167-y
The Solar Dynamo and Its Phase Transitions during the Last Millennium
S. Duhau and C. de Jager Solar Physics 250 (1) 1 (2008) https://doi.org/10.1007/s11207-008-9212-x
Modeling of Sunspot Numbers by a Modified Binary Mixture of Laplace Distribution Functions
A. Sabarinath and A. K. Anilkumar Solar Physics 250 (1) 183 (2008) https://doi.org/10.1007/s11207-008-9209-5
Forecasting the Time Series of Sunspot Numbers
L. A. Aguirre, C. Letellier and J. Maquet Solar Physics 249 (1) 103 (2008) https://doi.org/10.1007/s11207-008-9160-5
For how long will the current grand maximum of solar activity persist?
J. A. Abreu, J. Beer, F. Steinhilber, S. M. Tobias and N. O. Weiss Geophysical Research Letters 35 (20) (2008) https://doi.org/10.1029/2008GL035442
Long-Term Sunspot Number Prediction based on EMD Analysis and AR Model
Tong Xu, Jian Wu, Zhen-Sen Wu and Qiang Li Chinese Journal of Astronomy and Astrophysics 8 (3) 337 (2008) https://doi.org/10.1088/1009-9271/8/3/10
Solar Cycle Prediction Using Precursors and Flux Transport Models
R. Cameron and M. Schussler The Astrophysical Journal 659 (1) 801 (2007) https://doi.org/10.1086/512049
Are solar cycles predictable?
M. Schüssler Astronomische Nachrichten 328 (10) 1087 (2007) https://doi.org/10.1002/asna.200710836
Low Dimensional Chaos from the Group Sunspot Numbers
Qi-Xiu Li and Ke-Jun Li Chinese Journal of Astronomy and Astrophysics 7 (3) 435 (2007) https://doi.org/10.1088/1009-9271/7/3/14
Low-Dimensional Chaos of High-Latitude Solar Activity
Qi-Xiu Li and Ke-Jun Li Publications of the Astronomical Society of Japan 59 (5) 983 (2007) https://doi.org/10.1093/pasj/59.5.983
Empirical evidences of persistence and dynamical chaos in solar–terrestrial phenomena
S. Panchev and M. Tsekov Journal of Atmospheric and Solar-Terrestrial Physics 69 (17-18) 2391 (2007) https://doi.org/10.1016/j.jastp.2007.07.011
S. Marra and F.C. Morabito 3722 (2006) https://doi.org/10.1109/IJCNN.2006.247388
Predicting Chaotic Time Series Using Neural and Neurofuzzy Models: A Comparative Study
Ali Gholipour, Babak N. Araabi and Caro Lucas Neural Processing Letters 24 (3) 217 (2006) https://doi.org/10.1007/s11063-006-9021-x
A method to evaluate the level of solar activity at the remainder of a progressing solar cycle
K.J. Li, J. Qiu, F.Y. Xiang, P.X. Gao and T.W. Su New Astronomy 10 (3) 209 (2005) https://doi.org/10.1016/j.newast.2004.10.003
Solar variability: Evolution of correlation properties
Elena M. Blanter, Mikhail G. Shnirman and Jean-Louis Le Mouël Journal of Atmospheric and Solar-Terrestrial Physics 67 (6) 521 (2005) https://doi.org/10.1016/j.jastp.2004.12.002
Sunspot cycle 24: Smallest cycle in 100 years?
Leif Svalgaard, Edward W. Cliver and Yohsuke Kamide Geophysical Research Letters 32 (1) (2005) https://doi.org/10.1029/2004GL021664
Diagnostics of Polar Field Reversal in Solar Cycle 23 Using a Flux Transport Dynamo Model
Mausumi Dikpati, Giuliana de Toma, Peter A. Gilman, Charles N. Arge and Oran R. White The Astrophysical Journal 601 (2) 1136 (2004) https://doi.org/10.1086/380508
A method of predicting the smoothed monthly mean sunspot numbers in solar cycle 23
Zhao Hai-juan, Liang Hong-fei, Zhan La-sheng and Zhong Shu-hua Chinese Astronomy and Astrophysics 28 (1) 67 (2004) https://doi.org/10.1016/S0275-1062(04)90007-0
Long-Term Solar Variability and the Solar Cycle in the 21st Century
Boncho P. Bonev, Kaloyan M. Penev and Stefano Sello The Astrophysical Journal 605 (1) L81 (2004) https://doi.org/10.1086/420695
The Sun and Space Weather
The Sun and Space Weather 223 (2004) https://doi.org/10.1007/0-306-48211-8_13
Solar cycle activity: A preliminary prediction for cycle #24
S. Sello Astronomy & Astrophysics 410 (2) 691 (2003) https://doi.org/10.1051/0004-6361:20031295
Astrophysics in 2002
Virginia Trimble and Markus J. Aschwanden Publications of the Astronomical Society of the Pacific 115 (807) 514 (2003) https://doi.org/10.1086/374651