Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Disentangling stellar atmospheric parameters in astronomical spectra using generative adversarial neural networks

M. Manteiga, R. Santoveña, M. A. Álvarez, C. Dafonte, M. G. Penedo, S. Navarro and L. Corral
Astronomy & Astrophysics 694 A326 (2025)
https://doi.org/10.1051/0004-6361/202451786

COSMIC: A Galaxy Cluster–Finding Algorithm Using Machine Learning

Da-Chuan Tian, Yang Yang, Zhong-Lue Wen and Jun-Qing Xia
The Astrophysical Journal Supplement Series 276 (1) 21 (2025)
https://doi.org/10.3847/1538-4365/ad8bbd

Photometric Selection of Type 1 Quasars in the XMM-LSS Field with Machine Learning and the Disk–Corona Connection

Jian Huang, Bin Luo, W. N. Brandt, Ying Chen, Qingling Ni, Yongquan Xue and Zijian Zhang
The Astrophysical Journal 979 (2) 107 (2025)
https://doi.org/10.3847/1538-4357/ad9baf

The JWST Emission Line Survey (JELS): an untargeted search for H α emission line galaxies at z > 6 and their physical properties

C A Pirie, P N Best, K J Duncan, D J McLeod, R K Cochrane, M Clausen, J S Dunlop, S R Flury, J E Geach, C L Hale, E Ibar, R Kondapally, Zefeng Li, J Matthee, R J McLure, L Ossa-Fuentes, A L Patrick, Ian Smail, D Sobral, H M O Stephenson, J P Stott and A M Swinbank
Monthly Notices of the Royal Astronomical Society 541 (2) 1348 (2025)
https://doi.org/10.1093/mnras/staf1006

Performance Comparison of Supervised Machine Learning Methods in Classifying Celestial Objects

Maide Feyza Er and Turgay Tugay Bilgin
Black Sea Journal of Engineering and Science 7 (5) 960 (2024)
https://doi.org/10.34248/bsengineering.1517904

Exploring the dependence of gas cooling and heating functions on the incident radiation field with machine learning

David Robinson, Camille Avestruz and Nickolay Y Gnedin
Monthly Notices of the Royal Astronomical Society 528 (1) 255 (2024)
https://doi.org/10.1093/mnras/stad3880

Boost recall in quasi-stellar object selection from highly imbalanced photometric datasets

Giorgio Calderone, Francesco Guarneri, Matteo Porru, Stefano Cristiani, Andrea Grazian, Luciano Nicastro, Manuela Bischetti, Konstantina Boutsia, Guido Cupani, Valentina D’Odorico, Chiara Feruglio and Fabio Fontanot
Astronomy & Astrophysics 683 A34 (2024)
https://doi.org/10.1051/0004-6361/202346625

Search for and Study of the Brightest Stars in the Galaxy IC 342

O. N. Sholukhova, N. A. Tikhonov, Yu. N. Solovyeva, A. N. Sarkisian, A. S. Vinokurov, A. T. Valcheva, P. L. Nedialkov, D. V. Bizyaev, B. F. Williams and V. D. Ivanov
Astrophysical Bulletin 79 (3) 373 (2024)
https://doi.org/10.1134/S1990341324600431

Quaia, the Gaia-unWISE Quasar Catalog: An All-sky Spectroscopic Quasar Sample

Kate Storey-Fisher, David W. Hogg, Hans-Walter Rix, Anna-Christina Eilers, Giulio Fabbian, Michael R. Blanton and David Alonso
The Astrophysical Journal 964 (1) 69 (2024)
https://doi.org/10.3847/1538-4357/ad1328