Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Ensemble-learning for pressure prediction in vacuum circuit breaker using feature fusion of laser-induced plasma spectra and images

Wei Ke, Jianbin Pan, Huan Yuan, Xiaohua Wang, Dongzhi Zhang and Mingzhe Rong
Spectrochimica Acta Part B: Atomic Spectroscopy 226 107137 (2025)
https://doi.org/10.1016/j.sab.2025.107137

Searching for high-redshift quasars with the Photometric Vision Quasar Network (PVQNet)

Chen Zhang, Wenyu Wang, Meixia Qu, Bin Jiang and YanXia Zhang
Publications of the Astronomical Society of Japan (2025)
https://doi.org/10.1093/pasj/psaf061

Hybrid-z: Enhancing the Kilo-Degree Survey bright galaxy sample photometric redshifts with deep learning

Anjitha John William, Priyanka Jalan, Maciej Bilicki, Wojciech A. Hellwing, Hareesh Thuruthipilly and Szymon J. Nakoneczny
Astronomy & Astrophysics 698 A276 (2025)
https://doi.org/10.1051/0004-6361/202453576

Transferring spectroscopic stellar labels to 217 million Gaia DR3 XP stars with SHBoost

A. Khalatyan, F. Anders, C. Chiappini, A. B. A. Queiroz, S. Nepal, M. dal Ponte, C. Jordi, G. Guiglion, M. Valentini, G. Torralba Elipe, M. Steinmetz, M. Pantaleoni-González, S. Malhotra, Ó. Jiménez-Arranz, H. Enke, L. Casamiquela and J. Ardèvol
Astronomy & Astrophysics 691 A98 (2024)
https://doi.org/10.1051/0004-6361/202451427

Identifying type II quasars at intermediate redshift with few-shot learning photometric classification

P. A. C. Cunha, A. Humphrey, J. Brinchmann, S. G. Morais, R. Carvajal, J. M. Gomes, I. Matute and A. Paulino-Afonso
Astronomy & Astrophysics 687 A269 (2024)
https://doi.org/10.1051/0004-6361/202346426

Euclid preparation

L. Bisigello, M. Massimo, C. Tortora, S. Fotopoulou, V. Allevato, M. Bolzonella, C. Gruppioni, L. Pozzetti, G. Rodighiero, S. Serjeant, P. A. C. Cunha, L. Gabarra, A. Feltre, A. Humphrey, F. La Franca, H. Landt, F. Mannucci, I. Prandoni, M. Radovich, F. Ricci, M. Salvato, F. Shankar, D. Stern, L. Spinoglio, D. Vergani, et al.
Astronomy & Astrophysics 691 A1 (2024)
https://doi.org/10.1051/0004-6361/202450446

Machine learning based stellar classification with highly sparse photometry data

Seán Enis Cody, Sebastian Scher, Iain McDonald, Albert Zijlstra, Emma Alexander and Nick Cox
Open Research Europe 4 29 (2024)
https://doi.org/10.12688/openreseurope.17023.1

Machine learning applications in studies of the physical properties of active galactic nuclei based on photometric observations

Sarah Mechbal, Markus Ackermann and Marek Kowalski
Astronomy & Astrophysics 685 A107 (2024)
https://doi.org/10.1051/0004-6361/202346557

Exploring galactic properties with machine learning

F. Z. Zeraatgari, F. Hafezianzadeh, Y.-X. Zhang, A. Mosallanezhad and J.-Y. Zhang
Astronomy & Astrophysics 688 A33 (2024)
https://doi.org/10.1051/0004-6361/202348714

Machine learning based stellar classification with highly sparse photometry data

Seán Enis Cody, Sebastian Scher, Iain McDonald, Albert Zijlstra, Emma Alexander and Nick Cox
Open Research Europe 4 29 (2024)
https://doi.org/10.12688/openreseurope.17023.2

Fine-grained photometric classification using multi-model fusion method with redshift estimation

Peng Cheng, Zhihui Liu, Fatemeh Zahra Zeraatgri and Liquan Mei
Journal of High Energy Astrophysics 43 198 (2024)
https://doi.org/10.1016/j.jheap.2024.07.008

Photometric Redshift Estimation of Quasars by a Cross-modal Contrast Learning Method

Chen Zhang, Wenyu Wang, Meixia Qu, Bin Jiang and YanXia Zhang
The Astronomical Journal 168 (6) 244 (2024)
https://doi.org/10.3847/1538-3881/ad79f9

Euclid preparation

A. Enia, M. Bolzonella, L. Pozzetti, A. Humphrey, P. A. C. Cunha, W. G. Hartley, F. Dubath, S. Paltani, X. Lopez Lopez, S. Quai, S. Bardelli, L. Bisigello, S. Cavuoti, G. De Lucia, M. Ginolfi, A. Grazian, M. Siudek, C. Tortora, G. Zamorani, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, et al.
Astronomy & Astrophysics 691 A175 (2024)
https://doi.org/10.1051/0004-6361/202451425

The regression for the redshifts of galaxies in SDSS DR18

Wen Xiao-Qing, Yin Hong-Wei, Liu Feng-Hua, Yang Shang-Tao, Zhu Yi-Rong, Yang Jin-Meng, Su Zi-Jie and Guan Bing
Chinese Journal of Physics 90 542 (2024)
https://doi.org/10.1016/j.cjph.2024.05.045

Dynamic bond stress-slip relationship of steel reinforcing bars in concrete based on XGBoost algorithm

Xinxin Li, Zhaolun Ran, Dan Zheng, Chenghe Hu, Zhangchen Qin, Haicui Wang, Zhao Wang and Pengfei Li
Journal of Building Engineering 84 108368 (2024)
https://doi.org/10.1016/j.jobe.2023.108368

Machine learning-based photometric classification of galaxies, quasars, emission-line galaxies, and stars

Fatemeh Zahra Zeraatgari, Fatemeh Hafezianzadeh, Yanxia Zhang, Liquan Mei, Ashraf Ayubinia, Amin Mosallanezhad and Jingyi Zhang
Monthly Notices of the Royal Astronomical Society 527 (3) 4677 (2023)
https://doi.org/10.1093/mnras/stad3436

Safely advancing a spacefaring humanity with artificial intelligence

Catherine E. Richards, Tom Cernev, Asaf Tzachor, Gustavs Zilgalvis and Bartu Kaleagasi
Frontiers in Space Technologies 4 (2023)
https://doi.org/10.3389/frspt.2023.1199547

Photometric classification of quasars from ALHAMBRA survey using random forest

Benjamín Arroquia-Cuadros, Néstor Sánchez, Vicent Gómez, et al.
Astronomy & Astrophysics 673 A48 (2023)
https://doi.org/10.1051/0004-6361/202245531

Measurement methods for gamma-ray bursts redshifts

Mengci Li, Zhe Kang, Chao Wu, Chengzhi Liu, Jirong Mao, Zhenwei Li, Shiyu Deng, Bingli Niu and Ping Jiang
Frontiers in Astronomy and Space Sciences 10 (2023)
https://doi.org/10.3389/fspas.2023.1124317

The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning

L. Cabayol, M. Eriksen, J. Carretero, et al.
Astronomy & Astrophysics 671 A153 (2023)
https://doi.org/10.1051/0004-6361/202245027

Selection of powerful radio galaxies with machine learning

R. Carvajal, I. Matute, J. Afonso, R. P. Norris, K. J. Luken, P. Sánchez-Sáez, P. A. C. Cunha, A. Humphrey, H. Messias, S. Amarantidis, D. Barbosa, H. A. Cruz, H. Miranda, A. Paulino-Afonso and C. Pappalardo
Astronomy & Astrophysics 679 A101 (2023)
https://doi.org/10.1051/0004-6361/202245770

Toward a generalizable machine learning workflow for neurodegenerative disease staging with focus on neurofibrillary tangles

Juan C. Vizcarra, Thomas M. Pearce, Brittany N. Dugger, Michael J. Keiser, Marla Gearing, John F. Crary, Evan J. Kiely, Meaghan Morris, Bartholomew White, Jonathan D. Glass, Kurt Farrell and David A. Gutman
Acta Neuropathologica Communications 11 (1) (2023)
https://doi.org/10.1186/s40478-023-01691-x

PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars

Shuxin Hong, Zhiqiang Zou, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 518 (4) 5049 (2022)
https://doi.org/10.1093/mnras/stac3259

Machine-learning classification of astronomical sources: estimating F1-score in the absence of ground truth

A Humphrey, W Kuberski, J Bialek, N Perrakis, W Cools, N Nuyttens, H Elakhrass and P A C Cunha
Monthly Notices of the Royal Astronomical Society: Letters 517 (1) L116 (2022)
https://doi.org/10.1093/mnrasl/slac120